These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32728345)

  • 21. Data-driven modelling of brain activity using neural networks, diffusion maps, and the Koopman operator.
    Gallos IK; Lehmberg D; Dietrich F; Siettos C
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38285718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning for universal linear embeddings of nonlinear dynamics.
    Lusch B; Kutz JN; Brunton SL
    Nat Commun; 2018 Nov; 9(1):4950. PubMed ID: 30470743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Data-Efficient Reinforcement Learning for Complex Nonlinear Systems.
    Donge VS; Lian B; Lewis FL; Davoudi A
    IEEE Trans Cybern; 2024 Mar; 54(3):1391-1402. PubMed ID: 37906478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kernel-Based Approximation of the Koopman Generator and Schrödinger Operator.
    Klus S; Nüske F; Hamzi B
    Entropy (Basel); 2020 Jun; 22(7):. PubMed ID: 33286494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum mechanics and data assimilation.
    Giannakis D
    Phys Rev E; 2019 Sep; 100(3-1):032207. PubMed ID: 31639900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eigenvalues of autocovariance matrix: A practical method to identify the Koopman eigenfrequencies.
    Zhen Y; Chapron B; Mémin E; Peng L
    Phys Rev E; 2022 Mar; 105(3-1):034205. PubMed ID: 35428119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization.
    Baddoo PJ; Herrmann B; McKeon BJ; Brunton SL
    Proc Math Phys Eng Sci; 2022 Apr; 478(2260):20210830. PubMed ID: 35450026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracting Nonlinear Dynamics from Psychological and Behavioral Time Series Through HAVOK Analysis.
    Moulder RG; Martynova E; Boker SM
    Multivariate Behav Res; 2023; 58(2):441-465. PubMed ID: 35001769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the phase space of coupled oscillators with Koopman analysis.
    Wang S; Lan Y
    Phys Rev E; 2021 Sep; 104(3-1):034211. PubMed ID: 34654104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Koopman spectral analysis of elementary cellular automata.
    Taga K; Kato Y; Kawahara Y; Yamazaki Y; Nakao H
    Chaos; 2021 Oct; 31(10):103121. PubMed ID: 34717334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Koopman and Perron-Frobenius operators on reproducing kernel Banach spaces.
    Ikeda M; Ishikawa I; Schlosser C
    Chaos; 2022 Dec; 32(12):123143. PubMed ID: 36587322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning enhanced dynamic mode decomposition.
    Alford-Lago DJ; Curtis CW; Ihler AT; Issan O
    Chaos; 2022 Mar; 32(3):033116. PubMed ID: 35364851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ISOKANN: Invariant subspaces of Koopman operators learned by a neural network.
    Rabben RJ; Ray S; Weber M
    J Chem Phys; 2020 Sep; 153(11):114109. PubMed ID: 32962364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning latent dynamics for partially observed chaotic systems.
    Ouala S; Nguyen D; Drumetz L; Chapron B; Pascual A; Collard F; Gaultier L; Fablet R
    Chaos; 2020 Oct; 30(10):103121. PubMed ID: 33138452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual attention recognition based on nonlinear dynamical parameters of EEG.
    Ke Y; Chen L; Fu L; Jia Y; Li P; Zhao X; Qi H; Zhou P; Zhang L; Wan B; Ming D
    Biomed Mater Eng; 2014; 24(1):349-55. PubMed ID: 24211916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectral analysis of the Koopman operator for partial differential equations.
    Nakao H; Mezić I
    Chaos; 2020 Nov; 30(11):113131. PubMed ID: 33261357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structured time-delay models for dynamical systems with connections to Frenet-Serret frame.
    Hirsh SM; Ichinaga SM; Brunton SL; Nathan Kutz J; Brunton BW
    Proc Math Phys Eng Sci; 2021 Oct; 477(2254):20210097. PubMed ID: 35153585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling of dynamical systems through deep learning.
    Rajendra P; Brahmajirao V
    Biophys Rev; 2020 Nov; 12(6):1311-20. PubMed ID: 33222032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Data-Driven Bayesian Koopman Learning Method for Modeling Hysteresis Dynamics.
    Huang X; Zhang HT; Wang J
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; PP():. PubMed ID: 37402205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.