These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice. Xiong Q; Wang Z; Yu Y; Wen Y; Suguro R; Mao Y; Zhu YZ Pharmacol Res; 2019 Jun; 144():90-98. PubMed ID: 30959158 [TBL] [Abstract][Full Text] [Related]
23. MicroRNA-124-3p inhibits collagen synthesis in atherosclerotic plaques by targeting prolyl 4-hydroxylase subunit alpha-1 (P4HA1) in vascular smooth muscle cells. Chen W; Yu F; Di M; Li M; Chen Y; Zhang Y; Liu X; Huang X; Zhang M Atherosclerosis; 2018 Oct; 277():98-107. PubMed ID: 30193190 [TBL] [Abstract][Full Text] [Related]
24. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Shankman LS; Gomez D; Cherepanova OA; Salmon M; Alencar GF; Haskins RM; Swiatlowska P; Newman AA; Greene ES; Straub AC; Isakson B; Randolph GJ; Owens GK Nat Med; 2015 Jun; 21(6):628-37. PubMed ID: 25985364 [TBL] [Abstract][Full Text] [Related]
25. Potential role of insulin receptor isoforms and IGF receptors in plaque instability of human and experimental atherosclerosis. Beneit N; Martín-Ventura JL; Rubio-Longás C; Escribano Ó; García-Gómez G; Fernández S; Sesti G; Hribal ML; Egido J; Gómez-Hernández A; Benito M Cardiovasc Diabetol; 2018 Feb; 17(1):31. PubMed ID: 29463262 [TBL] [Abstract][Full Text] [Related]
26. Deletion or Inhibition of NOD1 Favors Plaque Stability and Attenuates Atherothrombosis in Advanced Atherogenesis González-Ramos S; Fernández-García V; Recalde M; Rodríguez C; Martínez-González J; Andrés V; Martín-Sanz P; Boscá L Cells; 2020 Sep; 9(9):. PubMed ID: 32927803 [TBL] [Abstract][Full Text] [Related]
27. Evidence for CD34/SMA positive cells in the left main coronary artery in atherogenesis. Kruzliak P; Hare DL; Sabaka P; Delev D; Gaspar L; Rodrigo L; Zulli A Acta Histochem; 2016 May; 118(4):413-7. PubMed ID: 27087050 [TBL] [Abstract][Full Text] [Related]
28. Macrophages and atherosclerotic plaque stability. Libby P; Geng YJ; Aikawa M; Schoenbeck U; Mach F; Clinton SK; Sukhova GK; Lee RT Curr Opin Lipidol; 1996 Oct; 7(5):330-5. PubMed ID: 8937525 [TBL] [Abstract][Full Text] [Related]
29. EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis. Finney AC; Funk SD; Green JM; Yurdagul A; Rana MA; Pistorius R; Henry M; Yurochko A; Pattillo CB; Traylor JG; Chen J; Woolard MD; Kevil CG; Orr AW Circulation; 2017 Aug; 136(6):566-582. PubMed ID: 28487392 [TBL] [Abstract][Full Text] [Related]
30. Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis. Butoi E; Gan AM; Tucureanu MM; Stan D; Macarie RD; Constantinescu C; Calin M; Simionescu M; Manduteanu I Biochim Biophys Acta; 2016 Jul; 1863(7 Pt A):1568-78. PubMed ID: 27060293 [TBL] [Abstract][Full Text] [Related]
31. Intracellular calcium transients are necessary for platelet-derived growth factor but not extracellular matrix protein-induced vascular smooth muscle cell migration. Hollenbeck ST; Nelson PR; Yamamura S; Faries PL; Liu B; Kent KC J Vasc Surg; 2004 Aug; 40(2):351-8. PubMed ID: 15297833 [TBL] [Abstract][Full Text] [Related]
32. Increased cell and matrix accumulation during atherogenesis in mice with vessel wall-specific deletion of discoidin domain receptor 1. Franco C; Ahmad PJ; Hou G; Wong E; Bendeck MP Circ Res; 2010 Jun; 106(11):1775-83. PubMed ID: 20448217 [TBL] [Abstract][Full Text] [Related]
34. Thrombosis formation on atherosclerotic lesions and plaque rupture. Badimon L; Vilahur G J Intern Med; 2014 Dec; 276(6):618-32. PubMed ID: 25156650 [TBL] [Abstract][Full Text] [Related]
35. Extensive Proliferation of a Subset of Differentiated, yet Plastic, Medial Vascular Smooth Muscle Cells Contributes to Neointimal Formation in Mouse Injury and Atherosclerosis Models. Chappell J; Harman JL; Narasimhan VM; Yu H; Foote K; Simons BD; Bennett MR; Jørgensen HF Circ Res; 2016 Dec; 119(12):1313-1323. PubMed ID: 27682618 [TBL] [Abstract][Full Text] [Related]
36. Pro-elastogenic effects of mesenchymal stem cell derived smooth muscle cells in a 3D collagenous milieu. Dahal S; Swaminathan G; Carney S; Broekelmann T; Mecham R; Ramamurthi A Acta Biomater; 2020 Mar; 105():180-190. PubMed ID: 31982591 [TBL] [Abstract][Full Text] [Related]
37. An investigation into the critical role of fibre orientation in the ultimate tensile strength and stiffness of human carotid plaque caps. Johnston RD; Gaul RT; Lally C Acta Biomater; 2021 Apr; 124():291-300. PubMed ID: 33571712 [TBL] [Abstract][Full Text] [Related]
38. Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta. Topouzis S; Majesky MW Dev Biol; 1996 Sep; 178(2):430-45. PubMed ID: 8830742 [TBL] [Abstract][Full Text] [Related]
39. No Significant Role for Smooth Muscle Cell Mineralocorticoid Receptors in Atherosclerosis in the Apolipoprotein-E Knockout Mouse Model. Moss ME; DuPont JJ; Iyer SL; McGraw AP; Jaffe IZ Front Cardiovasc Med; 2018; 5():81. PubMed ID: 30038907 [No Abstract] [Full Text] [Related]
40. PCSK6 Is a Key Protease in the Control of Smooth Muscle Cell Function in Vascular Remodeling. Rykaczewska U; Suur BE; Röhl S; Razuvaev A; Lengquist M; Sabater-Lleal M; van der Laan SW; Miller CL; Wirka RC; Kronqvist M; Gonzalez Diez M; Vesterlund M; Gillgren P; Odeberg J; Lindeman JH; Veglia F; Humphries SE; de Faire U; Baldassarre D; Tremoli E; ; Lehtiö J; Hansson GK; Paulsson-Berne G; Pasterkamp G; Quertermous T; Hamsten A; Eriksson P; Hedin U; Matic L Circ Res; 2020 Feb; 126(5):571-585. PubMed ID: 31893970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]