These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Random Forest Refinement of the KECSA2 Knowledge-Based Scoring Function for Protein Decoy Detection. Pei J; Zheng Z; Merz KM J Chem Inf Model; 2019 May; 59(5):1919-1929. PubMed ID: 30726079 [TBL] [Abstract][Full Text] [Related]
6. Random Forest Refinement of Pairwise Potentials for Protein-Ligand Decoy Detection. Pei J; Zheng Z; Kim H; Song LF; Walworth S; Merz MR; Merz KM J Chem Inf Model; 2019 Jul; 59(7):3305-3315. PubMed ID: 31264420 [TBL] [Abstract][Full Text] [Related]
7. Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark. Fourches D; Politi R; Tropsha A J Chem Inf Model; 2015 Jan; 55(1):63-71. PubMed ID: 25521713 [TBL] [Abstract][Full Text] [Related]
8. Sampling and Scoring in Protein-Protein Docking. Zięba A; Matosiuk D Methods Mol Biol; 2024; 2780():15-26. PubMed ID: 38987461 [TBL] [Abstract][Full Text] [Related]
9. Boosted neural networks scoring functions for accurate ligand docking and ranking. Ashtawy HM; Mahapatra NR J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922 [TBL] [Abstract][Full Text] [Related]
10. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures. Maheshwari S; Brylinski M BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230 [TBL] [Abstract][Full Text] [Related]
11. Using correlated parameters for improved ranking of protein-protein docking decoys. Mitra P; Pal D J Comput Chem; 2011 Apr; 32(5):787-96. PubMed ID: 20941737 [TBL] [Abstract][Full Text] [Related]
12. Predicting protein complex geometries with linear scoring functions. Demir-Kavuk O; Krull F; Chae MH; Knapp EW Genome Inform; 2010; 24():21-30. PubMed ID: 22081586 [TBL] [Abstract][Full Text] [Related]
13. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing. Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116 [TBL] [Abstract][Full Text] [Related]
15. Pair Potentials as Machine Learning Features. Pei J; Song LF; Merz KM J Chem Theory Comput; 2020 Aug; 16(8):5385-5400. PubMed ID: 32559380 [TBL] [Abstract][Full Text] [Related]
16. On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking. Feliu E; Aloy P; Oliva B Protein Sci; 2011 Mar; 20(3):529-41. PubMed ID: 21432933 [TBL] [Abstract][Full Text] [Related]
17. Accurate Prediction of Docked Protein Structure Similarity. Akbal-Delibas B; Pomplun M; Haspel N J Comput Biol; 2015 Sep; 22(9):892-904. PubMed ID: 26335807 [TBL] [Abstract][Full Text] [Related]
18. A systematic analysis of scoring functions in rigid-body protein docking: The delicate balance between the predictive rate improvement and the risk of overtraining. Barradas-Bautista D; Moal IH; Fernández-Recio J Proteins; 2017 Jul; 85(7):1287-1297. PubMed ID: 28342242 [TBL] [Abstract][Full Text] [Related]
19. FFENCODER-PL: Pair Wise Energy Descriptors for Protein-Ligand Pose Selection. Pei J; Song LF; Merz KM J Chem Theory Comput; 2021 Oct; 17(10):6647-6657. PubMed ID: 34553938 [TBL] [Abstract][Full Text] [Related]
20. Multi-LZerD: multiple protein docking for asymmetric complexes. Esquivel-Rodríguez J; Yang YD; Kihara D Proteins; 2012 Jul; 80(7):1818-33. PubMed ID: 22488467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]