These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 32729166)
21. Where is the Oxygen? Structural Analysis of α-Humulene Oxidation Products by the Crystalline Sponge Method. Zigon N; Hoshino M; Yoshioka S; Inokuma Y; Fujita M Angew Chem Int Ed Engl; 2015 Jul; 54(31):9033-7. PubMed ID: 26072708 [TBL] [Abstract][Full Text] [Related]
22. Determination of the Absolute Configuration of the Pseudo-Symmetric Natural Product Elatenyne by the Crystalline Sponge Method. Urban S; Brkljača R; Hoshino M; Lee S; Fujita M Angew Chem Int Ed Engl; 2016 Feb; 55(8):2678-82. PubMed ID: 26880368 [TBL] [Abstract][Full Text] [Related]
23. The benefits of Cu Meurer F; von Essen C; Kühn C; Puschmann H; Bodensteiner M IUCrJ; 2022 May; 9(Pt 3):349-354. PubMed ID: 35546798 [TBL] [Abstract][Full Text] [Related]
24. Structural Elucidation of Trace Amounts of Volatile Compounds Using the Crystalline Sponge Method. Zigon N; Kikuchi T; Ariyoshi J; Inokuma Y; Fujita M Chem Asian J; 2017 May; 12(10):1057-1061. PubMed ID: 28382777 [TBL] [Abstract][Full Text] [Related]
25. Statistical optimization of guest uptake in crystalline sponges: grading structural outcomes. Carroll RC; Coles SJ IUCrJ; 2024 Jul; 11(Pt 4):578-586. PubMed ID: 38864498 [TBL] [Abstract][Full Text] [Related]
26. Improvements to the Practical Usability of the "Crystalline Sponge" Method for Organic Structure Determination. Waldhart GW; Mankad NP; Santarsiero BD Org Lett; 2016 Dec; 18(23):6112-6115. PubMed ID: 27934356 [TBL] [Abstract][Full Text] [Related]
27. A systematic study of the interplay between guest molecule structure and intermolecular interactions in crystalline sponges. Carroll RC; Harrowven DC; Pearce JE; Coles SJ IUCrJ; 2023 Jul; 10(Pt 4):497-508. PubMed ID: 37409807 [TBL] [Abstract][Full Text] [Related]
28. Combined Analysis Based on a Crystalline Sponge Method. Ohara K; Yamaguchi K Anal Sci; 2021 Jan; 37(1):167-175. PubMed ID: 33132236 [TBL] [Abstract][Full Text] [Related]
29. Crystalline-Sponge-Based Structural Analysis of Crude Natural Product Extracts. Wada N; Kersten RD; Iwai T; Lee S; Sakurai F; Kikuchi T; Fujita D; Fujita M; Weng JK Angew Chem Int Ed Engl; 2018 Mar; 57(14):3671-3675. PubMed ID: 29417714 [TBL] [Abstract][Full Text] [Related]
30. Solvent Effects in the Crystalline Sponge Method: Importance of Co-solvents for Ordering Absorbed Guests. Wada N; Kageyama K; Jung Y; Mitsuhashi T; Fujita M Org Lett; 2021 Dec; 23(23):9288-9291. PubMed ID: 34806896 [TBL] [Abstract][Full Text] [Related]
31. Rapid Analysis of Trace Amounts of Amino Acid Derivatives by a Formyl Group-Installed Crystalline Sponge. Zhou B; Utjapimuk S; Yan K; Dubey R; Kikuchi T; Mitsuhashi T; Fujita M Chem Asian J; 2024 Feb; 19(3):e202300969. PubMed ID: 38059774 [TBL] [Abstract][Full Text] [Related]
32. Absolute configuration determination of asarinin by synchrotron radiation with crystalline sponge method. Li K; Yang DS; Gu XF; Di B Fitoterapia; 2019 Apr; 134():135-140. PubMed ID: 30771464 [TBL] [Abstract][Full Text] [Related]
33. Conformational Analysis of (+)-Germacrene D-4-ol Using the Crystalline Sponge Method to Elucidate the Origin of its Instability. Jung Y; Mitsuhashi T; Kageyama K; Kikuchi T; Sato S; Fujita M Chemistry; 2024 Jul; 30(39):e202400512. PubMed ID: 38742865 [TBL] [Abstract][Full Text] [Related]
34. Hydrogen-bonded frameworks for molecular structure determination. Li Y; Tang S; Yusov A; Rose J; Borrfors AN; Hu CT; Ward MD Nat Commun; 2019 Oct; 10(1):4477. PubMed ID: 31578331 [TBL] [Abstract][Full Text] [Related]
35. Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal-Organic Framework. Balestri D; Mazzeo PP; Carraro C; Demitri N; Pelagatti P; Bacchi A Angew Chem Int Ed Engl; 2019 Nov; 58(48):17342-17350. PubMed ID: 31549464 [TBL] [Abstract][Full Text] [Related]
36. The growing importance of crystalline molecular flasks and the crystalline sponge method. Gee WJ Dalton Trans; 2017 Nov; 46(46):15979-15986. PubMed ID: 29106430 [TBL] [Abstract][Full Text] [Related]
37. The mechanism responsible for extraordinary Cs ion selectivity in crystalline silicotitanate. Celestian AJ; Kubicki JD; Hanson J; Clearfield A; Parise JB J Am Chem Soc; 2008 Sep; 130(35):11689-94. PubMed ID: 18683931 [TBL] [Abstract][Full Text] [Related]
38. "Separated" versus "contact" ion-pair structures in solution from their crystalline states: dynamic effects on dinitrobenzenide as a mixed-valence anion. Lü JM; Rosokha SV; Lindeman SV; Neretin IS; Kochi JK J Am Chem Soc; 2005 Feb; 127(6):1797-809. PubMed ID: 15701015 [TBL] [Abstract][Full Text] [Related]
39. Development of a structure determination method using a multidrug-resistance regulator protein as a framework. Matsumoto T; Nakashima R; Yamano A; Nishino K Biochem Biophys Res Commun; 2019 Oct; 518(2):402-408. PubMed ID: 31431261 [TBL] [Abstract][Full Text] [Related]