BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 32729228)

  • 21. Direct Powering a Real Cardiac Pacemaker by Natural Energy of a Heartbeat.
    Li N; Yi Z; Ma Y; Xie F; Huang Y; Tian Y; Dong X; Liu Y; Shao X; Li Y; Jin L; Liu J; Xu Z; Yang B; Zhang H
    ACS Nano; 2019 Mar; 13(3):2822-2830. PubMed ID: 30784259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics.
    Park S; Heo SW; Lee W; Inoue D; Jiang Z; Yu K; Jinno H; Hashizume D; Sekino M; Yokota T; Fukuda K; Tajima K; Someya T
    Nature; 2018 Sep; 561(7724):516-521. PubMed ID: 30258137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Minimally invasive power sources for implantable electronics.
    Xu M; Liu Y; Yang K; Li S; Wang M; Wang J; Yang D; Shkunov M; Silva SRP; Castro FA; Zhao Y
    Exploration (Beijing); 2024 Feb; 4(1):20220106. PubMed ID: 38854488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifunctional Pacemaker Lead for Cardiac Energy Harvesting and Pressure Sensing.
    Dong L; Closson AB; Jin C; Nie Y; Cabe A; Escobedo D; Huang S; Trase I; Xu Z; Chen Z; Feldman MD; Zhang JXJ
    Adv Healthc Mater; 2020 Jun; 9(11):e2000053. PubMed ID: 32347010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy.
    Hansen BJ; Liu Y; Yang R; Wang ZL
    ACS Nano; 2010 Jul; 4(7):3647-52. PubMed ID: 20507155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Harvesting Inertial Energy and Powering Wearable Devices: A Review.
    Zhang H; Shen Q; Zheng P; Wang H; Zou R; Zhang Z; Pan Y; Zhi JY; Xiang ZR
    Small Methods; 2024 Jan; 8(1):e2300771. PubMed ID: 37853661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics.
    Huang X; Wang L; Wang H; Zhang B; Wang X; Stening RYZ; Sheng X; Yin L
    Small; 2020 Apr; 16(15):e1902827. PubMed ID: 31513333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices.
    Zhou H; Zhang Y; Qiu Y; Wu H; Qin W; Liao Y; Yu Q; Cheng H
    Biosens Bioelectron; 2020 Nov; 168():112569. PubMed ID: 32905930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.
    Hannan MA; Hussein HA; Mutashar S; Samad SA; Hussain A
    Sensors (Basel); 2014 Dec; 14(12):23843-70. PubMed ID: 25615728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wireless Power Transfer and Telemetry for Implantable Bioelectronics.
    Yoo S; Lee J; Joo H; Sunwoo SH; Kim S; Kim DH
    Adv Healthc Mater; 2021 Sep; 10(17):e2100614. PubMed ID: 34075721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
    Bocan KN; Sejdić E
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of nanostructured skin patches towards multifunctional wearable platforms for biomedical applications.
    Rybak D; Su YC; Li Y; Ding B; Lv X; Li Z; Yeh YC; Nakielski P; Rinoldi C; Pierini F; Dodda JM
    Nanoscale; 2023 May; 15(18):8044-8083. PubMed ID: 37070933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy harvesting: an integrated view of materials, devices and applications.
    Radousky HB; Liang H
    Nanotechnology; 2012 Dec; 23(50):502001. PubMed ID: 23186865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On-Body Piezoelectric Energy Harvesters through Innovative Designs and Conformable Structures.
    Fernandez SV; Cai F; Chen S; Suh E; Tiepelt J; McIntosh R; Marcus C; Acosta D; Mejorado D; Dagdeviren C
    ACS Biomater Sci Eng; 2023 May; 9(5):2070-2086. PubMed ID: 34735770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intraurethral Energy Harvesting from Urine Flow as an Approach to Power Urologic Implants.
    Benke E; Stoinski RT; Preis A; Reitelshofer S; Martin S; Franke J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7215-7218. PubMed ID: 34892764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.
    Hwang GT; Byun M; Jeong CK; Lee KJ
    Adv Healthc Mater; 2015 Apr; 4(5):646-58. PubMed ID: 25476410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue-Matchable and Implantable Batteries Toward Biomedical Applications.
    Yan B; Zhao Y; Peng H
    Small Methods; 2023 Oct; 7(10):e2300501. PubMed ID: 37469190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring.
    Ma Y; Zheng Q; Liu Y; Shi B; Xue X; Ji W; Liu Z; Jin Y; Zou Y; An Z; Zhang W; Wang X; Jiang W; Xu Z; Wang ZL; Li Z; Zhang H
    Nano Lett; 2016 Oct; 16(10):6042-6051. PubMed ID: 27607151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Fully Biodegradable Battery for Self-Powered Transient Implants.
    Huang X; Wang D; Yuan Z; Xie W; Wu Y; Li R; Zhao Y; Luo D; Cen L; Chen B; Wu H; Xu H; Sheng X; Zhang M; Zhao L; Yin L
    Small; 2018 Jul; 14(28):e1800994. PubMed ID: 29806124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasound-Induced Wireless Energy Harvesting: From Materials Strategies to Functional Applications.
    Jiang L; Yang Y; Chen Y; Zhou Q
    Nano Energy; 2020 Nov; 77():. PubMed ID: 32905454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.