These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 32729518)
1. Biomimetic sensor for ethambutol employing β-cyclodextrin mediated chiral copper metal organic framework and carbon nanofibers modified glassy carbon electrode. Upadhyay SS; Gadhari NS; Srivastava AK Biosens Bioelectron; 2020 Oct; 165():112397. PubMed ID: 32729518 [TBL] [Abstract][Full Text] [Related]
2. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. Zou J; Yu JG Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110910. PubMed ID: 32409064 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical sensing of copper (II) ion in water using bi-metal oxide framework modified glassy carbon electrode. Theerthagiri S; Rajkannu P; Senthil Kumar P; Peethambaram P; Ayyavu C; Rasu R; Kannaiyan D Food Chem Toxicol; 2022 Sep; 167():113313. PubMed ID: 35872257 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II). Qian J; Yi Y; Zhang D; Zhu G Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704 [TBL] [Abstract][Full Text] [Related]
5. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Liang J; Song Y; Zhao Y; Gao Y; Hou J; Yang G Mikrochim Acta; 2023 Oct; 190(11):433. PubMed ID: 37814099 [TBL] [Abstract][Full Text] [Related]
6. Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform. Shahrokhian S; Khaki Sanati E; Hosseini H Biosens Bioelectron; 2018 Jul; 112():100-107. PubMed ID: 29702380 [TBL] [Abstract][Full Text] [Related]
7. Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode. Kalambate PK; Rawool CR; Karna SP; Srivastava AK Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():453-61. PubMed ID: 27612735 [TBL] [Abstract][Full Text] [Related]
8. Chiral recognition of tyrosine enantiomers on a novel bis-aminosaccharides composite modified glassy carbon electrode. Zou J; Yu JG Anal Chim Acta; 2019 Dec; 1088():35-44. PubMed ID: 31623714 [TBL] [Abstract][Full Text] [Related]
9. An amperometric biosensor based on poly(L-aspartic acid), nanodiamond particles, carbon nanofiber, and ascorbate oxidase-modified glassy carbon electrode for the determination of L-ascorbic acid. Kaçar C; Erden PE Anal Bioanal Chem; 2020 Sep; 412(22):5315-5327. PubMed ID: 32533225 [TBL] [Abstract][Full Text] [Related]
10. Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol. Couto RA; Quinaz MB Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27376291 [TBL] [Abstract][Full Text] [Related]
11. Enzyme-free glucose sensor based on layer-by-layer electrodeposition of multilayer films of multi-walled carbon nanotubes and Cu-based metal framework modified glassy carbon electrode. Wu L; Lu Z; Ye J Biosens Bioelectron; 2019 Jun; 135():45-49. PubMed ID: 30991271 [TBL] [Abstract][Full Text] [Related]
12. An electrochemical and computational study for discrimination of D- and L-cystine by reduced graphene oxide/β-cyclodextrin. Zor E; Bingol H; Ramanaviciene A; Ramanavicius A; Ersoz M Analyst; 2015 Jan; 140(1):313-21. PubMed ID: 25382195 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic sensor for certain catecholamines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. Sanghavi BJ; Mobin SM; Mathur P; Lahiri GK; Srivastava AK Biosens Bioelectron; 2013 Jan; 39(1):124-32. PubMed ID: 22841445 [TBL] [Abstract][Full Text] [Related]
14. Entrapment of bimetallic CoFeSe Sakthivel M; Ramaraj S; Chen SM; Dinesh B; Ramasamy HV; Lee YS Anal Chim Acta; 2018 May; 1006():22-32. PubMed ID: 30016261 [TBL] [Abstract][Full Text] [Related]
15. Novel electrochemical biosensor for breast cancer detection, based on a nanocomposite of carbon nanofiber, metal-organic framework, and magnetic graphene oxide. Sadrabadi EA; Benvidi A; Azimzadeh M; Asgharnejad L; Dezfuli AS; Khashayar P Bioelectrochemistry; 2024 Feb; 155():108558. PubMed ID: 37716260 [TBL] [Abstract][Full Text] [Related]
16. A poly(acrylic acid)-modified copper-organic framework for electrochemical determination of vancomycin. Gill AAS; Singh S; Agrawal N; Nate Z; Chiwunze TE; Thapliyal NB; Chauhan R; Karpoormath R Mikrochim Acta; 2020 Jan; 187(1):79. PubMed ID: 31897733 [TBL] [Abstract][Full Text] [Related]
17. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers. Xiao Q; Lu S; Huang C; Su W; Huang S Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834863 [TBL] [Abstract][Full Text] [Related]
18. Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide. Zaidi SA Biosens Bioelectron; 2017 Aug; 94():714-718. PubMed ID: 28395254 [TBL] [Abstract][Full Text] [Related]
19. Novel electrochemical synthesis of copper oxide nanoparticles decorated graphene-β-cyclodextrin composite for trace-level detection of antibiotic drug metronidazole. Velusamy V; Palanisamy S; Kokulnathan T; Chen SW; Yang TCK; Banks CE; Pramanik SK J Colloid Interface Sci; 2018 Nov; 530():37-45. PubMed ID: 29960906 [TBL] [Abstract][Full Text] [Related]
20. An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples. Madrakian T; Maleki S; Heidari M; Afkhami A Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():637-43. PubMed ID: 27040259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]