These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Nanopore Blockade Sensors for Quantitative Analysis Using an Optical Nanopore Assay. Doan THP; Fried JP; Tang W; Hagness DE; Yang Y; Wu Y; Tilley RD; Gooding JJ Nano Lett; 2024 May; 24(21):6218-6224. PubMed ID: 38757765 [TBL] [Abstract][Full Text] [Related]
4. Selectively detecting attomolar concentrations of proteins using gold lined nanopores in a nanopore blockade sensor. Wu Y; Yao Y; Cheong S; Tilley RD; Gooding JJ Chem Sci; 2020 Oct; 11(46):12570-12579. PubMed ID: 34094456 [TBL] [Abstract][Full Text] [Related]
5. Challenges and Solutions in Developing Ultrasensitive Biosensors. Wu Y; Tilley RD; Gooding JJ J Am Chem Soc; 2019 Jan; 141(3):1162-1170. PubMed ID: 30463401 [TBL] [Abstract][Full Text] [Related]
6. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Cao C; Long YT Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650 [TBL] [Abstract][Full Text] [Related]
7. Key Parameters That Determine the Magnitude of the Decrease in Current in Nanopore Blockade Sensors. Tang W; Wu Y; Mehdipour M; Chen HS; Tilley RD; Gooding JJ Nano Lett; 2021 Nov; 21(22):9374-9380. PubMed ID: 34726925 [TBL] [Abstract][Full Text] [Related]
9. Understanding and modelling the magnitude of the change in current of nanopore sensors. Tang W; Fried JP; Tilley RD; Gooding JJ Chem Soc Rev; 2022 Jul; 51(14):5757-5776. PubMed ID: 35748606 [TBL] [Abstract][Full Text] [Related]
10. Nanopore stochastic detection: diversity, sensitivity, and beyond. Wang G; Wang L; Han Y; Zhou S; Guan X Acc Chem Res; 2013 Dec; 46(12):2867-77. PubMed ID: 23614724 [TBL] [Abstract][Full Text] [Related]
11. Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores. Cecchini MP; Wiener A; Turek VA; Chon H; Lee S; Ivanov AP; McComb DW; Choo J; Albrecht T; Maier SA; Edel JB Nano Lett; 2013 Oct; 13(10):4602-9. PubMed ID: 24021086 [TBL] [Abstract][Full Text] [Related]
12. Selective target protein detection using a decorated nanopore into a microfluidic device. Fujinami Tanimoto IM; Cressiot B; Jarroux N; Roman J; Patriarche G; Le Pioufle B; Pelta J; Bacri L Biosens Bioelectron; 2021 Jul; 183():113195. PubMed ID: 33857755 [TBL] [Abstract][Full Text] [Related]
14. A generalizable nanopore sensor for highly specific protein detection at single-molecule precision. Ahmad M; Ha JH; Mayse LA; Presti MF; Wolfe AJ; Moody KJ; Loh SN; Movileanu L Nat Commun; 2023 Mar; 14(1):1374. PubMed ID: 36941245 [TBL] [Abstract][Full Text] [Related]
15. The application of single molecule nanopore sensing for quantitative analysis. Wu Y; Gooding JJ Chem Soc Rev; 2022 May; 51(10):3862-3885. PubMed ID: 35506519 [TBL] [Abstract][Full Text] [Related]
16. A nanopore-nanofiber mesh biosensor to control DNA translocation. Squires AH; Hersey JS; Grinstaff MW; Meller A J Am Chem Soc; 2013 Nov; 135(44):16304-7. PubMed ID: 24143914 [TBL] [Abstract][Full Text] [Related]
17. Learning Shapelets for Improving Single-Molecule Nanopore Sensing. Wei ZX; Ying YL; Li MY; Yang J; Zhou JL; Wang HF; Yan BY; Long YT Anal Chem; 2019 Aug; 91(15):10033-10039. PubMed ID: 31083925 [TBL] [Abstract][Full Text] [Related]