BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32729598)

  • 1. Controlled pharmacokinetic anti-cancer drug concentration profiles lead to growth inhibition of colorectal cancer cells in a microfluidic device.
    Komen J; Westerbeek EY; Kolkman RW; Roesthuis J; Lievens C; van den Berg A; van der Meer AD
    Lab Chip; 2020 Aug; 20(17):3167-3178. PubMed ID: 32729598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorectal Adenocarcinoma Cell Culture in a Microfluidically Controlled Environment with a Static Molecular Gradient of Polyphenol.
    Szafran RG; Gąsiorowski K; Wiatrak B
    Molecules; 2021 May; 26(11):. PubMed ID: 34072020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A magnetically controlled microfluidic device for concentration dependent
    Yadav VK; Ganguly P; Mishra P; Das S; Mallick D
    Lab Chip; 2023 Sep; 23(19):4352-4365. PubMed ID: 37712390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubing-Free Microfluidic Microtissue Culture System Featuring Gradual,
    Lohasz C; Frey O; Bonanini F; Renggli K; Hierlemann A
    Front Bioeng Biotechnol; 2019; 7():72. PubMed ID: 31001529
    [No Abstract]   [Full Text] [Related]  

  • 6. Analysis of Static Molecular Gradients in a High-Throughput Drug Screening Microfluidic Assay.
    Szafran RG; Wiatrak B
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unlocking the Potential of Organ-on-Chip Models through Pumpless and Tubeless Microfluidics.
    Delon LC; Nilghaz A; Cheah E; Prestidge C; Thierry B
    Adv Healthc Mater; 2020 Jun; 9(11):e1901784. PubMed ID: 32342669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Microfluidic Perfusion Platform for In Vitro Analysis of Drug Pharmacokinetic-Pharmacodynamic (PK-PD) Relationships.
    Guerrero YA; Desai D; Sullivan C; Kindt E; Spilker ME; Maurer TS; Solomon DE; Bartlett DW
    AAPS J; 2020 Mar; 22(2):53. PubMed ID: 32124093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic system that replicates pharmacokinetic (PK) profiles in vitro improves prediction of in vivo efficacy in preclinical models.
    Singh D; Deosarkar SP; Cadogan E; Flemington V; Bray A; Zhang J; Reiserer RS; Schaffer DK; Gerken GB; Britt CM; Werner EM; Gibbons FD; Kostrzewski T; Chambers CE; Davies EJ; Montoya AR; Fok JHL; Hughes D; Fabre K; Wagoner MP; Wikswo JP; Scott CW
    PLoS Biol; 2022 May; 20(5):e3001624. PubMed ID: 35617197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Pharmacokinetic Profiles for Assessment of Anti-Cancer Drug on a Microfluidic System.
    Guo Y; Deng P; Chen W; Li Z
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32486116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal circuits on a chip for biological network monitoring.
    Herreros P; Ballesteros-Esteban LM; Laguna MF; Leyva I; Sendiña-Nadal I; Holgado M
    Biotechnol J; 2021 Jul; 16(7):e2000355. PubMed ID: 33984186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Wick-Like Paper-Based Microfluidic Device for 3D Cell Culture and Anti-Cancer Drugs Screening.
    Fu SX; Zuo P; Ye BC
    Biotechnol J; 2021 Feb; 16(2):e2000126. PubMed ID: 33460221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Microfluidic Array to Study Drug Response in Breast Cancer.
    Virumbrales-Muñoz M; Livingston MK; Farooqui M; Skala MC; Beebe DJ; Ayuso JM
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31801265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A programmable microfluidic cell array for combinatorial drug screening.
    Kim J; Taylor D; Agrawal N; Wang H; Kim H; Han A; Rege K; Jayaraman A
    Lab Chip; 2012 Apr; 12(10):1813-22. PubMed ID: 22456798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of molecular and nano-therapies on brain tumor models in microfluidic devices.
    Martins AM; Brito A; Barbato MG; Felici A; Reis RL; Pires RA; Pashkuleva I; Decuzzi P
    Biomater Adv; 2023 Jan; 144():213227. PubMed ID: 36470174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the reliability of tumour spheroid-on-chip models for replicating intratumoural drug delivery: considering the role of microfluidic parameters.
    Besanjideh M; Shamloo A; Hannani SK
    J Drug Target; 2023 Feb; 31(2):179-193. PubMed ID: 36036226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Induced Pluripotent Stem-Cardiac-Endothelial-Tumor-on-a-Chip to Assess Anticancer Efficacy and Cardiotoxicity.
    Weng KC; Kurokawa YK; Hajek BS; Paladin JA; Shirure VS; George SC
    Tissue Eng Part C Methods; 2020 Jan; 26(1):44-55. PubMed ID: 31797733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic technologies for anticancer drug studies.
    Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M
    Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Culture Conditions on Cell Proliferation in a Microfluidic Channel.
    Sato K; Sato M; Yokoyama M; Hirai M; Furuta A
    Anal Sci; 2019 Jan; 35(1):49-56. PubMed ID: 30473567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.