BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 32729599)

  • 1. An affordable 3D-printed positioner fixture improves the resolution of conventional milling for easy prototyping of acrylic microfluidic devices.
    Guevara-Pantoja PE; Chavez-Pineda OG; Solis-Serrano AM; Garcia-Cordero JL; Caballero-Robledo GA
    Lab Chip; 2020 Aug; 20(17):3179-3186. PubMed ID: 32729599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Design and Implementation of a High-Precision Positioner Fixture.
    Zhao X; Tan R; Wang Z; Zou X; Hu Z; Sun T
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems.
    Thaweskulchai T; Schulte A
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: an application for tumor spheroid production.
    Behroodi E; Latifi H; Bagheri Z; Ermis E; Roshani S; Salehi Moghaddam M
    Sci Rep; 2020 Dec; 10(1):22171. PubMed ID: 33335148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optofluidic Modular Blocks for On-Demand and Open-Source Prototyping of Microfluidic Systems.
    Lee Y; Kim B; Oh I; Choi S
    Small; 2018 Dec; 14(52):e1802769. PubMed ID: 30375722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemiluminescence at Bare and DNA-Coated Graphite Electrodes in 3D-Printed Fluidic Devices.
    Bishop GW; Satterwhite-Warden JE; Bist I; Chen E; Rusling JF
    ACS Sens; 2016; 1(2):197-202. PubMed ID: 27135052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed microfluidic devices with integrated valves.
    Rogers CI; Qaderi K; Woolley AT; Nordin GP
    Biomicrofluidics; 2015 Jan; 9(1):016501. PubMed ID: 25610517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.
    Villegas M; Cetinic Z; Shakeri A; Didar TF
    Anal Chim Acta; 2018 Feb; 1000():248-255. PubMed ID: 29289317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PDMS lab-on-a-chip fabrication using 3D printed templates.
    Comina G; Suska A; Filippini D
    Lab Chip; 2014 Jan; 14(2):424-30. PubMed ID: 24281262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Prototyping of Thermoplastic Microfluidic Devices.
    Novak R; Ng CF; Ingber DE
    Methods Mol Biol; 2018; 1771():161-170. PubMed ID: 29633212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Lateral and Vertical Dimensions of Micromolds Fabricated by a PolyJetâ„¢ Printer.
    Vijayan S; Parthiban P; Hashimoto M
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33805817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printed microfluidic automation.
    Au AK; Bhattacharjee N; Horowitz LF; Chang TC; Folch A
    Lab Chip; 2015 Apr; 15(8):1934-41. PubMed ID: 25738695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed metal molds for hot embossing plastic microfluidic devices.
    Lin TY; Do T; Kwon P; Lillehoj PB
    Lab Chip; 2017 Jan; 17(2):241-247. PubMed ID: 27934978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the Resolution of 3D-Printed Molds for Microfluidics by Iterative Casting-Shrinkage Cycles.
    Sun M; Xie Y; Zhu J; Li J; Eijkel JC
    Anal Chem; 2017 Feb; 89(4):2227-2231. PubMed ID: 28192927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed LED based on-capillary detector housing with integrated slit.
    Cecil F; Zhang M; Guijt RM; Henderson A; Nesterenko PN; Paull B; Breadmore MC; Macka M
    Anal Chim Acta; 2017 May; 965():131-136. PubMed ID: 28366210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of paper-based microfluidic analytical device for iron assay using photomask printed with 3D printer for fabrication of hydrophilic and hydrophobic zones on paper by photolithography.
    Asano H; Shiraishi Y
    Anal Chim Acta; 2015 Jul; 883():55-60. PubMed ID: 26088776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of CAD-CAM-fabricated removable partial dentures.
    Arnold C; Hey J; Schweyen R; Setz JM
    J Prosthet Dent; 2018 Apr; 119(4):586-592. PubMed ID: 28709674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.