BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32729605)

  • 1. Defluorination of 4-fluorothreonine by threonine deaminase.
    Wu L; Deng H
    Org Biomol Chem; 2020 Aug; 18(32):6236-6240. PubMed ID: 32729605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An unusual metal-bound 4-fluorothreonine transaldolase from Streptomyces sp. MA37 catalyses promiscuous transaldol reactions.
    Wu L; Tong MH; Raab A; Fang Q; Wang S; Kyeremeh K; Yu Y; Deng H
    Appl Microbiol Biotechnol; 2020 May; 104(9):3885-3896. PubMed ID: 32140842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis methionine gamma-lyase is regulated according to isoleucine biosynthesis needs but plays a subordinate role to threonine deaminase.
    Joshi V; Jander G
    Plant Physiol; 2009 Sep; 151(1):367-78. PubMed ID: 19571310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyamino acid utilization and alpha-ketobutyrate toxicity in Pseudomonas cepacia.
    Wong HC; Allenza P; Lessie TG
    J Bacteriol; 1980 Oct; 144(1):441-3. PubMed ID: 6774965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threonine degradation by Serratia marcescens.
    Komatsubara S; Murata K; Kisumi M; Chibata I
    J Bacteriol; 1978 Aug; 135(2):318-23. PubMed ID: 355220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Arabidopsis threonine aldolases are nonredundant and compete with threonine deaminase for a common substrate pool.
    Joshi V; Laubengayer KM; Schauer N; Fernie AR; Jander G
    Plant Cell; 2006 Dec; 18(12):3564-75. PubMed ID: 17172352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Activity of threonine deaminase and biosynthesis of avermectins in the culture of Streptomyces avermitilis].
    Mironov VA; Sergeeva AV; Danilenko VN
    Antibiot Khimioter; 1995 Aug; 40(8):3-6. PubMed ID: 8713429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of threonine dehydrogenase in Escherichia coli threonine degradation.
    Potter R; Kapoor V; Newman EB
    J Bacteriol; 1977 Nov; 132(2):385-91. PubMed ID: 334738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of L-threonine deaminase and L-threonine 3-dehydrogenase in the utilization of L-threonine by Pseudomonas aeruginosa.
    Lam VM; Chan IP; Yeung YG
    J Gen Microbiol; 1980 Apr; 117(2):539-42. PubMed ID: 6775044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threonine-degrading enzymes in the chicken.
    Davis AT; Austic RE
    Poult Sci; 1982 Oct; 61(10):2107-11. PubMed ID: 6817321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function correlations between the rat liver threonine deaminase and aminotransferases.
    Scarselli M; Padula MG; Bernini A; Spiga O; Ciutti A; Leoncini R; Vannoni D; Marinello E; Niccolai N
    Biochim Biophys Acta; 2003 Jan; 1645(1):40-8. PubMed ID: 12535609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient approach to identify ilvA mutations reveals an amino-terminal catalytic domain in biosynthetic threonine deaminase from Escherichia coli.
    Fisher KE; Eisenstein E
    J Bacteriol; 1993 Oct; 175(20):6605-13. PubMed ID: 8407838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavior of L-threonine-degrading enzymes during liver regeneration.
    Tabucchi A; Rainis R; Lorenzi M; Pagani R; Marinello E
    Biochim Biophys Acta; 1987 Nov; 926(2):177-85. PubMed ID: 3117120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereochemistry of the reaction of sheep liver threonine dehydratase. A nuclear magnetic resonance and optical rotatory dispersion study of its reaction pathway and products.
    Kapke G; Davis L
    Biochemistry; 1976 Aug; 15(17):3745-9. PubMed ID: 986166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An expanded two-state model accounts for homotropic cooperativity in biosynthetic threonine deaminase from Escherichia coli.
    Eisenstein E; Yu HD; Fisher KE; Iacuzio DA; Ducote KR; Schwarz FP
    Biochemistry; 1995 Jul; 34(29):9403-12. PubMed ID: 7626610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme.
    Carvalho MF; Oliveira RS
    Crit Rev Biotechnol; 2017 Nov; 37(7):880-897. PubMed ID: 28049355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro reconstituted biotransformation of 4-fluorothreonine from fluoride ion: application of the fluorinase.
    Deng H; Cross SM; McGlinchey RP; Hamilton JT; O'Hagan D
    Chem Biol; 2008 Dec; 15(12):1268-76. PubMed ID: 19101471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of Escherichia coli biodegradative threonine dehydratase by pyruvate.
    Park LS; Datta P
    J Bacteriol; 1979 Jun; 138(3):1026-8. PubMed ID: 378926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a novel biochemical pathway for the biosynthesis of L-2-aminobutyric acid in Escherichia coli K12.
    Fotheringham IG; Grinter N; Pantaleone DP; Senkpeil RF; Taylor PP
    Bioorg Med Chem; 1999 Oct; 7(10):2209-13. PubMed ID: 10579528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic basis for the isoleucine, pantothenate or methionine requirement of ilvG strains of Salmonella typhimurium.
    Primerano DA; Burns RO
    J Bacteriol; 1982 Jun; 150(3):1202-11. PubMed ID: 7042686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.