These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32729968)

  • 1. Asparagine accumulation in chicory storage roots is controlled by translocation and feedback regulation of asparagine biosynthesis in leaves.
    Soares E; Shumbe L; Dauchot N; Notté C; Prouin C; Maudoux O; Vanderschuren H
    New Phytol; 2020 Nov; 228(3):922-931. PubMed ID: 32729968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of 12 EST libraries and characterization of a 12,226 EST dataset for chicory (Cichorium intybus) root, leaves and nodules in the context of carbohydrate metabolism investigation.
    Dauchot N; Mingeot D; Purnelle B; Muys C; Watillon B; Boutry M; Van Cutsem P
    BMC Plant Biol; 2009 Jan; 9():14. PubMed ID: 19175922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drought induces fructan synthesis and 1-SST (sucrose:sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.).
    De Roover J; Vandenbranden ; Van Laere A; Van den Ende W
    Planta; 2000 Apr; 210(5):808-14. PubMed ID: 10805453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High temperatures limit plant growth but hasten flowering in root chicory (Cichorium intybus) independently of vernalisation.
    Mathieu AS; Lutts S; Vandoorne B; Descamps C; Périlleux C; Dielen V; Van Herck JC; Quinet M
    J Plant Physiol; 2014 Jan; 171(2):109-18. PubMed ID: 24331425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolomic profiling of the nutritional components of chicory leaves following heat processing.
    Kobayashi W; Tomizawa A; Kurawaka M; Abe M; Watanabe A; Ayabe S
    J Food Sci; 2024 Apr; 89(4):2054-2066. PubMed ID: 38391109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthelmintic and metabolomic analyses of chicory (Cichorium intybus) identify an industrial by-product with potent in vitro antinematodal activity.
    Peña-Espinoza M; Valente AH; Bornancin L; Simonsen HT; Thamsborg SM; Williams AR; López-Muñoz R
    Vet Parasitol; 2020 Apr; 280():109088. PubMed ID: 32278938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for genotyping elite breeding stocks of leaf chicory (Cichorium intybus L.) by assaying mapped microsatellite marker loci.
    Ghedina A; Galla G; Cadalen T; Hilbert JL; Caenazzo ST; Barcaccia G
    BMC Res Notes; 2015 Dec; 8():831. PubMed ID: 26715298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-Targeted Mutagenesis of
    Domont J; Thiblet M; Etienne A; Santos HAD; Cadalen T; Hance P; Gagneul D; Hilbert JL; Rambaud C
    Front Biosci (Landmark Ed); 2023 Sep; 28(9):201. PubMed ID: 37796686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in insulin sensitivity by the association of chicoric acid and chlorogenic acid contained in a natural chicoric acid extract (NCRAE) of chicory (Cichorium intybus L.) for an antidiabetic effect.
    Ferrare K; Bidel LPR; Awwad A; Poucheret P; Cazals G; Lazennec F; Azay-Milhau J; Tournier M; Lajoix AD; Tousch D
    J Ethnopharmacol; 2018 Apr; 215():241-248. PubMed ID: 29325917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of phytotoxic effects, uptake and translocation of diclofenac in chicory (Cichorium intybus).
    Podio NS; Bertrand L; Wunderlin DA; Santiago AN
    Chemosphere; 2020 Feb; 241():125057. PubMed ID: 31629239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.).
    Lucau-Danila A; Laborde L; Legrand S; Huot L; Hot D; Lemoine Y; Hilbert JL; Hawkins S; Quillet MC; Hendriks T; Blervacq AS
    BMC Plant Biol; 2010 Jun; 10():122. PubMed ID: 20565992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of the germacrene A synthase genes by CRISPR/Cas9 eliminates the biosynthesis of sesquiterpene lactones in Cichorium intybus L.
    Cankar K; Bundock P; Sevenier R; Häkkinen ST; Hakkert JC; Beekwilder J; van der Meer IM; de Both M; Bosch D
    Plant Biotechnol J; 2021 Dec; 19(12):2442-2453. PubMed ID: 34270859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of 1-FEH in mature chicory roots appears to be related to low temperatures rather than to leaf damage.
    Van den Ende W; Van Laere A
    ScientificWorldJournal; 2002 Jun; 2():1750-61. PubMed ID: 12806168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silencing of germacrene A synthase genes reduces guaianolide oxalate content in
    Bogdanović M; Cankar K; Dragićević M; Bouwmeester H; Beekwilder J; Simonović A; Todorović S
    GM Crops Food; 2020; 11(1):54-66. PubMed ID: 31668117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of carbohydrate partitioning and expression patterns of some genes involved in carbohydrate biosynthesis pathways in annual and biennial species of Cichorium spp.
    Mohammadi F; Naghavi MR; Peighambari SA; Dehaghi NK; Nasiri J; Khaldari I; Bravi E; Sileoni V; Marconi O; Perretti G
    Phytochemistry; 2021 Mar; 183():112620. PubMed ID: 33360645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing Acrylamide Formation Potential by Targeting Free Asparagine Accumulation in Seeds.
    Oliver SL; Yobi A; Flint-Garcia S; Angelovici R
    J Agric Food Chem; 2024 Mar; 72(12):6089-6095. PubMed ID: 38483189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vitro and in-vivo antioxidant assays of chicory plants (Cichorium intybus L.) as influenced by organic and conventional fertilisers.
    Sinkovič L; Jamnik P; Korošec M; Vidrih R; Meglič V
    BMC Plant Biol; 2020 Jan; 20(1):36. PubMed ID: 31959114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red Chicory (Cichorium intybus) Extract Rich in Anthocyanins: Chemical Stability, Antioxidant Activity, and Antiproliferative Activity In Vitro.
    Migliorini AA; Piroski CS; Daniel TG; Cruz TM; Escher GB; Vieira do Carmo MA; Azevedo L; Marques MB; Granato D; Rosso ND
    J Food Sci; 2019 May; 84(5):990-1001. PubMed ID: 30945309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cichorium intybus L. is a potential Cd-accumulator for phytoremediation of agricultural soil with strong tolerance and detoxification to Cd.
    Wu S; Yang Y; Qin Y; Deng X; Zhang Q; Zou D; Zeng Q
    J Hazard Mater; 2023 Jun; 451():131182. PubMed ID: 36921417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phytoextraction power of Cichorium intybus L. on metal-contaminated soil: Focus on time- and cultivar-depending accumulation and distribution of cadmium, lead and zinc.
    Guérin T; Ghinet A; Waterlot C
    Chemosphere; 2022 Jan; 287(Pt 1):132122. PubMed ID: 34523454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.