These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32730242)

  • 1. In situ characterisation and manipulation of biological systems with Chi.Bio.
    Steel H; Habgood R; Kelly CL; Papachristodoulou A
    PLoS Biol; 2020 Jul; 18(7):e3000794. PubMed ID: 32730242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DIY optogenetics: Building, programming, and using the Light Plate Apparatus.
    Gerhardt KP; Castillo-Hair SM; Tabor JJ
    Methods Enzymol; 2019; 624():197-226. PubMed ID: 31370930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth.
    Milias-Argeitis A; Rullan M; Aoki SK; Buchmann P; Khammash M
    Nat Commun; 2016 Aug; 7():12546. PubMed ID: 27562138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic Modulation of a Catalytic Biofilm for the Biotransformation of Indole into Tryptophan.
    Hu Y; Liu X; Ren ATM; Gu JD; Cao B
    ChemSusChem; 2019 Dec; 12(23):5142-5148. PubMed ID: 31621183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing Automated, High-throughput, Continuous Cell Growth Experiments Using eVOLVER.
    Heins ZJ; Mancuso CP; Kiriakov S; Wong BG; Bashor CJ; Khalil AS
    J Vis Exp; 2019 May; (147):. PubMed ID: 31157778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platforms for Optogenetic Stimulation and Feedback Control.
    Kumar S; Khammash M
    Front Bioeng Biotechnol; 2022; 10():918917. PubMed ID: 35757811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput multicolor optogenetics in microwell plates.
    Bugaj LJ; Lim WA
    Nat Protoc; 2019 Jul; 14(7):2205-2228. PubMed ID: 31235951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetics Manipulation Enables Prevention of Biofilm Formation of Engineered Pseudomonas aeruginosa on Surfaces.
    Pu L; Yang S; Xia A; Jin F
    ACS Synth Biol; 2018 Jan; 7(1):200-208. PubMed ID: 29053252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of Saccharomyces cerevisiae.
    Bruder S; Reifenrath M; Thomik T; Boles E; Herzog K
    Microb Cell Fact; 2016 Jul; 15(1):127. PubMed ID: 27455954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Implementation of an Automated Illuminating, Culturing, and Sampling System for Microbial Optogenetic Applications.
    Stewart CJ; McClean MN
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioreactors in tissue engineering: scientific challenges and clinical perspectives.
    Wendt D; Riboldi SA; Cioffi M; Martin I
    Adv Biochem Eng Biotechnol; 2009; 112():1-27. PubMed ID: 19290495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enabling high-throughput biology with flexible open-source automation.
    Chory EJ; Gretton DW; DeBenedictis EA; Esvelt KM
    Mol Syst Biol; 2021 Mar; 17(3):e9942. PubMed ID: 33764680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable, wireless device platforms for neuroscience research.
    Gutruf P; Rogers JA
    Curr Opin Neurobiol; 2018 Jun; 50():42-49. PubMed ID: 29289027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter.
    Laxpati NG; Mahmoudi B; Gutekunst CA; Newman JP; Zeller-Townson R; Gross RE
    Front Neuroeng; 2014; 7():40. PubMed ID: 25404915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An open-hardware platform for optogenetics and photobiology.
    Gerhardt KP; Olson EJ; Castillo-Hair SM; Hartsough LA; Landry BP; Ekness F; Yokoo R; Gomez EJ; Ramakrishnan P; Suh J; Savage DF; Tabor JJ
    Sci Rep; 2016 Nov; 6():35363. PubMed ID: 27805047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards miniaturized closed-loop optogenetic stimulation devices.
    Edward ES; Kouzani AZ; Tye SJ
    J Neural Eng; 2018 Apr; 15(2):021002. PubMed ID: 29363618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HOPE: Hybrid-Drive Combining Optogenetics, Pharmacology and Electrophysiology.
    Delcasso S; Denagamage S; Britton Z; Graybiel AM
    Front Neural Circuits; 2018; 12():41. PubMed ID: 29872379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Open-Source Plate Reader.
    Szymula KP; Magaraci MS; Patterson M; Clark A; Mannickarottu SG; Chow BY
    Biochemistry; 2019 Feb; 58(6):468-473. PubMed ID: 30511843
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.