These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32730563)
1. P219L substitution in human D-amino acid oxidase impacts the ligand binding and catalytic efficiency. Rachadech W; Kato Y; Abou El-Magd RM; Shishido Y; Kim SH; Sogabe H; Maita N; Yorita K; Fukui K J Biochem; 2020 Nov; 168(5):557-567. PubMed ID: 32730563 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of human D-amino acid oxidase: context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the flavin ring. Kawazoe T; Tsuge H; Pilone MS; Fukui K Protein Sci; 2006 Dec; 15(12):2708-17. PubMed ID: 17088322 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of D-amino acid oxidase: a case of active site mirror-image convergent evolution with flavocytochrome b2. Mattevi A; Vanoni MA; Todone F; Rizzi M; Teplyakov A; Coda A; Bolognesi M; Curti B Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7496-501. PubMed ID: 8755502 [TBL] [Abstract][Full Text] [Related]
4. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase. Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402 [TBL] [Abstract][Full Text] [Related]
5. Yeast D-amino acid oxidase: structural basis of its catalytic properties. Pollegioni L; Diederichs K; Molla G; Umhau S; Welte W; Ghisla S; Pilone MS J Mol Biol; 2002 Nov; 324(3):535-46. PubMed ID: 12445787 [TBL] [Abstract][Full Text] [Related]
6. Substrate recognition and activation mechanism of D-amino acid oxidase: a study using substrate analogs. Nishina Y; Sato K; Miura R; Shiga K J Biochem; 2000 Aug; 128(2):213-23. PubMed ID: 10920257 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional structure of porcine kidney D-amino acid oxidase at 3.0 A resolution. Mizutani H; Miyahara I; Hirotsu K; Nishina Y; Shiga K; Setoyama C; Miura R J Biochem; 1996 Jul; 120(1):14-7. PubMed ID: 8864836 [TBL] [Abstract][Full Text] [Related]
8. A conserved aspartate is essential for FAD binding and catalysis in the D-amino acid oxidase from Trigonopsis variabilis. Ju SS; Lin LL; Wang WC; Hsu WH FEBS Lett; 1998 Sep; 436(1):119-22. PubMed ID: 9771905 [TBL] [Abstract][Full Text] [Related]
9. Human D-amino acid oxidase: an update and review. Kawazoe T; Park HK; Iwana S; Tsuge H; Fukui K Chem Rec; 2007; 7(5):305-15. PubMed ID: 17924443 [TBL] [Abstract][Full Text] [Related]
10. The crystal structure of D-amino acid oxidase with a substrate analog, o-aminobenzoate. Miyahara I J Biochem; 2022 Jan; 171(1):27-29. PubMed ID: 34750609 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, characterization and preliminary crystallographic data of N6-(6-carbamoylhexyl)-FAD-D-amino-acid oxidase from pig kidney, a semi-synthetic oxidase. Stocker A; Hecht HJ; Bückmann AF Eur J Biochem; 1996 Jun; 238(2):519-28. PubMed ID: 8681967 [TBL] [Abstract][Full Text] [Related]
12. Fusion protein of Vitreoscilla hemoglobin with D-amino acid oxidase enhances activity and stability of biocatalyst in the bioconversion process of cephalosporin C. Khang YH; Kim IW; Hah YR; Hwangbo JH; Kang KK Biotechnol Bioeng; 2003 May; 82(4):480-8. PubMed ID: 12632405 [TBL] [Abstract][Full Text] [Related]
13. A Highly Stable D-Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus. Takahashi S; Furukawara M; Omae K; Tadokoro N; Saito Y; Abe K; Kera Y Appl Environ Microbiol; 2014 Dec; 80(23):7219-29. PubMed ID: 25217016 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. Waksman G; Krishna TS; Williams CH; Kuriyan J J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095 [TBL] [Abstract][Full Text] [Related]
15. Role of arginine 285 in the active site of Rhodotorula gracilis D-amino acid oxidase. A site-directed mutagenesis study. Molla G; Porrini D; Job V; Motteran L; Vegezzi C; Campaner S; Pilone MS; Pollegioni L J Biol Chem; 2000 Aug; 275(32):24715-21. PubMed ID: 10821840 [TBL] [Abstract][Full Text] [Related]
16. Active site plasticity in D-amino acid oxidase: a crystallographic analysis. Todone F; Vanoni MA; Mozzarelli A; Bolognesi M; Coda A; Curti B; Mattevi A Biochemistry; 1997 May; 36(19):5853-60. PubMed ID: 9153426 [TBL] [Abstract][Full Text] [Related]
17. Design and properties of human D-amino acid oxidase with covalently attached flavin. Raibekas AA; Fukui K; Massey V Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3089-93. PubMed ID: 10716694 [TBL] [Abstract][Full Text] [Related]
18. Effects of hydrogen bonds in association with flavin and substrate in flavoenzyme d-amino acid oxidase. The catalytic and structural roles of Gly313 and Thr317. Setoyama C; Nishina Y; Tamaoki H; Mizutani H; Miyahara I; Hirotsu K; Shiga K; Miura R J Biochem; 2002 Jan; 131(1):59-69. PubMed ID: 11754736 [TBL] [Abstract][Full Text] [Related]
19. 13C-NMR studies on the reaction intermediates of porcine kidney D-amino acid oxidase reconstituted with 13C-enriched flavin adenine dinucleotide. Miura R; Miyake Y J Biochem; 1987 Dec; 102(6):1345-54. PubMed ID: 2896189 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional structure of the purple intermediate of porcine kidney D-amino acid oxidase. Optimization of the oxidative half-reaction through alignment of the product with reduced flavin. Mizutani H; Miyahara I; Hirotsu K; Nishina Y; Shiga K; Setoyama C; Miura R J Biochem; 2000 Jul; 128(1):73-81. PubMed ID: 10876160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]