These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32730565)

  • 1. PAMOGK: a pathway graph kernel-based multiomics approach for patient clustering.
    Tepeli YI; Ünal AB; Akdemir FM; Tastan O
    Bioinformatics; 2021 Jan; 36(21):5237-5246. PubMed ID: 32730565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multitask multiple kernel learning formulation for discriminating early- and late-stage cancers.
    Rahimi A; Gönen M
    Bioinformatics; 2020 Jun; 36(12):3766-3772. PubMed ID: 32163111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multiview Clustering Method With Low-Rank and Sparsity Constraints for Cancer Subtyping.
    Zhanpeng H; Jiekang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3213-3223. PubMed ID: 34705654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous clustering of multiview biomedical data using manifold optimization.
    Yu Y; Zhang LH; Zhang S
    Bioinformatics; 2019 Oct; 35(20):4029-4037. PubMed ID: 30918942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partition level multiview subspace clustering.
    Kang Z; Zhao X; Peng C; Zhu H; Zhou JT; Peng X; Chen W; Xu Z
    Neural Netw; 2020 Feb; 122():279-288. PubMed ID: 31731045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supervised Graph Clustering for Cancer Subtyping Based on Survival Analysis and Integration of Multi-Omic Tumor Data.
    Liu C; Cao W; Wu S; Shen W; Jiang D; Yu Z; Wong HS
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1193-1202. PubMed ID: 32750893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PIntMF: Penalized Integrative Matrix Factorization method for multi-omics data.
    Pierre-Jean M; Mauger F; Deleuze JF; Le Floch E
    Bioinformatics; 2022 Jan; 38(4):900-907. PubMed ID: 34849583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple kernel learning for integrative consensus clustering of omic datasets.
    Cabassi A; Kirk PDW
    Bioinformatics; 2020 Sep; 36(18):4789-4796. PubMed ID: 32592464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Late Fusion Multiple Kernel Clustering With Proxy Graph Refinement.
    Wang S; Liu X; Liu L; Zhou S; Zhu E
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4359-4370. PubMed ID: 34648458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust clustering of noisy high-dimensional gene expression data for patients subtyping.
    Coretto P; Serra A; Tagliaferri R
    Bioinformatics; 2018 Dec; 34(23):4064-4072. PubMed ID: 29939219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OGRE: Overlap Graph-based metagenomic Read clustEring.
    Balvert M; Luo X; Hauptfeld E; Schönhuth A; Dutilh BE
    Bioinformatics; 2021 May; 37(7):905-912. PubMed ID: 32871010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification.
    Moon S; Lee H
    Bioinformatics; 2022 Apr; 38(8):2287-2296. PubMed ID: 35157023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene set analysis with graph-embedded kernel association test.
    Qu J; Cui Y
    Bioinformatics; 2022 Mar; 38(6):1560-1567. PubMed ID: 34935928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genes and pathways involved in kidney renal clear cell carcinoma.
    Yang W; Yoshigoe K; Qin X; Liu JS; Yang JY; Niemierko A; Deng Y; Liu Y; Dunker A; Chen Z; Wang L; Xu D; Arabnia HR; Tong W; Yang M
    BMC Bioinformatics; 2014; 15 Suppl 17(Suppl 17):S2. PubMed ID: 25559354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JSNMF enables effective and accurate integrative analysis of single-cell multiomics data.
    Ma Y; Sun Z; Zeng P; Zhang W; Lin Z
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consensus Kernel
    Ye Y; Liu X; Liu Q; Yin J
    Comput Intell Neurosci; 2017; 2017():3961718. PubMed ID: 29312448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. densityCut: an efficient and versatile topological approach for automatic clustering of biological data.
    Ding J; Shah S; Condon A
    Bioinformatics; 2016 Sep; 32(17):2567-76. PubMed ID: 27153661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weighted graph cuts without eigenvectors a multilevel approach.
    Dhillon IS; Guan Y; Kulis B
    IEEE Trans Pattern Anal Mach Intell; 2007 Nov; 29(11):1944-57. PubMed ID: 17848776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grouper: graph-based clustering and annotation for improved de novo transcriptome analysis.
    Malik L; Almodaresi F; Patro R
    Bioinformatics; 2018 Oct; 34(19):3265-3272. PubMed ID: 29746620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DMCM: a Data-adaptive Mutation Clustering Method to identify cancer-related mutation clusters.
    Lu X; Qian X; Li X; Miao Q; Peng S
    Bioinformatics; 2019 Feb; 35(3):389-397. PubMed ID: 30010784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.