These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 32730867)

  • 1. Boesenbergia rotunda extract inhibits Candida albicans biofilm formation by pinostrobin and pinocembrin.
    Kanchanapiboon J; Kongsa U; Pattamadilok D; Kamponchaidet S; Wachisunthon D; Poonsatha S; Tuntoaw S
    J Ethnopharmacol; 2020 Oct; 261():113193. PubMed ID: 32730867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth.
    Haque F; Alfatah M; Ganesan K; Bhattacharyya MS
    Sci Rep; 2016 Mar; 6():23575. PubMed ID: 27030404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptibility to caspofungin and fluconazole and Als1/Als3 gene expression in biofilm and dispersal cells of Candida albicans.
    Bujdáková H; Kulková N; Černáková L
    Arh Hig Rada Toksikol; 2012 Dec; 63(4):497-503. PubMed ID: 23334045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The methanolic extract of Boesenbergia rotunda (L.) Mansf. and its major compound pinostrobin induces anti-ulcerogenic property in vivo: possible involvement of indirect antioxidant action.
    Abdelwahab SI; Mohan S; Abdulla MA; Sukari MA; Abdul AB; Taha MM; Syam S; Ahmad S; Lee KH
    J Ethnopharmacol; 2011 Sep; 137(2):963-70. PubMed ID: 21771650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of agglutinin-like sequence protein 3 (Als3) in the structure and antifungal resistance of Candida albicans biofilms.
    Liu C; Xu C; Du Y; Liu J; Ning Y
    FEMS Microbiol Lett; 2021 Jul; 368(14):. PubMed ID: 34232317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans.
    Vediyappan G; Rossignol T; d'Enfert C
    Antimicrob Agents Chemother; 2010 May; 54(5):2096-111. PubMed ID: 20194705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of
    Lee HS; Kim Y
    J Microbiol Biotechnol; 2018 Mar; 28(3):482-490. PubMed ID: 29316739
    [No Abstract]   [Full Text] [Related]  

  • 8. Tricyclic antidepressants inhibit Candida albicans growth and biofilm formation.
    Caldara M; Marmiroli N
    Int J Antimicrob Agents; 2018 Oct; 52(4):500-505. PubMed ID: 29990546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of berberine hydrochloride on Candida albicans biofilm formation.
    Huang X; Zheng M; Yi Y; Patel A; Song Z; Li Y
    Biotechnol Lett; 2020 Nov; 42(11):2263-2269. PubMed ID: 32557120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minocycline Inhibits Candida albicans Budded-to-Hyphal-Form Transition and Biofilm Formation.
    Kurakado S; Takatori K; Sugita T
    Jpn J Infect Dis; 2017 Sep; 70(5):490-494. PubMed ID: 28367877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms.
    Luiz RL; Vila TV; de Mello JC; Nakamura CV; Rozental S; Ishida K
    BMC Complement Altern Med; 2015 Mar; 15():68. PubMed ID: 25886244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifungal activity of amphotericin B and voriconazole against the biofilms and biofilm-dispersed cells of Candida albicans employing a newly developed in vitro pharmacokinetic model.
    El-Azizi M; Farag N; Khardori N
    Ann Clin Microbiol Antimicrob; 2015 Apr; 14():21. PubMed ID: 25885806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.
    Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ
    Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Effects of Plantago Major Extract, Aucubin, and Baicalein on Candida albicans Biofilm Formation, Metabolic Activity, and Cell Surface Hydrophobicity.
    Shirley KP; Windsor LJ; Eckert GJ; Gregory RL
    J Prosthodont; 2017 Aug; 26(6):508-515. PubMed ID: 26618515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological Evaluation and Docking Analysis of Potent BACE1 Inhibitors from
    Youn K; Jun M
    Nutrients; 2019 Mar; 11(3):. PubMed ID: 30893825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring ALS1 and ALS3 gene expression during in vitro Candida albicans biofilm formation under continuous flow conditions.
    Nailis H; Vandenbroucke R; Tilleman K; Deforce D; Nelis H; Coenye T
    Mycopathologia; 2009 Jan; 167(1):9-17. PubMed ID: 18683080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals.
    Watamoto T; Samaranayake LP; Egusa H; Yatani H; Seneviratne CJ
    J Med Microbiol; 2011 Sep; 60(Pt 9):1241-1247. PubMed ID: 21474609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis.
    Jafri H; Ahmad I
    J Mycol Med; 2020 Apr; 30(1):100911. PubMed ID: 32008964
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Janek T; Drzymała K; Dobrowolski A
    Biofouling; 2020 Feb; 36(2):210-221. PubMed ID: 32292058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro activity of baicalein against Candida albicans biofilms.
    Cao Y; Dai B; Wang Y; Huang S; Xu Y; Cao Y; Gao P; Zhu Z; Jiang Y
    Int J Antimicrob Agents; 2008 Jul; 32(1):73-7. PubMed ID: 18374543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.