BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 32731072)

  • 21. Changes in Microbial Composition During the Succession of Biological Soil Crusts in Alpine Hulun Buir Sandy Land, China.
    Duan Y; Li Y; Zhao J; Zhang J; Luo C; Jia R; Liu X
    Microb Ecol; 2024 Feb; 87(1):43. PubMed ID: 38363394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of temperature and initial pH on the growth of four dominant cyanobacteria species in biological soil crusts.
    Wang YF; Li X; Luo SS; Huang ZC; Ding ZZ; Zhou N; Zhao YG
    Ying Yong Sheng Tai Xue Bao; 2024 Feb; 35(2):516-522. PubMed ID: 38523110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Development and succession of biological soil crusts and the changes of microbial biomasses].
    Wu L; Zhang GK; Chen XG; Lan SB; Zhang DL; Hu CX
    Huan Jing Ke Xue; 2014 Apr; 35(4):1479-85. PubMed ID: 24946606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyanobacterial populations in biological soil crusts of the northwest Negev Desert, Israel-effects of local conditions and disturbance.
    Hagemann M; Henneberg M; Felde VJMNL; Berkowicz SM; Raanan H; Pade N; Felix-Henningsen P; Kaplan A
    FEMS Microbiol Ecol; 2017 Jun; 93(6):. PubMed ID: 27810874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado plateau.
    Garcia-Pichel F; López-Cortés A; Nübel U
    Appl Environ Microbiol; 2001 Apr; 67(4):1902-10. PubMed ID: 11282648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimizing the Production of Nursery-Based Biological Soil Crusts for Restoration of Arid Land Soils.
    Bethany J; Giraldo-Silva A; Nelson C; Barger NN; Garcia-Pichel F
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31152015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Habitat-dependent composition of bacterial and fungal communities in biological soil crusts from Oman.
    Abed RMM; Tamm A; Hassenrück C; Al-Rawahi AN; Rodríguez-Caballero E; Fiedler S; Maier S; Weber B
    Sci Rep; 2019 Apr; 9(1):6468. PubMed ID: 31015576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of environmental factors determining development and succession in biological soil crusts.
    Lan S; Wu L; Zhang D; Hu C
    Sci Total Environ; 2015 Dec; 538():492-9. PubMed ID: 26318686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands.
    Johnson SL; Neuer S; Garcia-Pichel F
    Environ Microbiol; 2007 Mar; 9(3):680-9. PubMed ID: 17298368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microenvironmental Conditions Drive the Differential Cyanobacterial Community Composition of Biocrusts from the Sahara Desert.
    Mehda S; Muñoz-Martín MÁ; Oustani M; Hamdi-Aïssa B; Perona E; Mateo P
    Microorganisms; 2021 Feb; 9(3):. PubMed ID: 33669110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in the Cyanobacterial Community Composition of Biocrusts From the Drylands of Central Mexico. Are There Endemic Species?
    Becerra-Absalón I; Muñoz-Martín MÁ; Montejano G; Mateo P
    Front Microbiol; 2019; 10():937. PubMed ID: 31130933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient.
    Muñoz-Martín MÁ; Becerra-Absalón I; Perona E; Fernández-Valbuena L; Garcia-Pichel F; Mateo P
    New Phytol; 2019 Jan; 221(1):123-141. PubMed ID: 30047599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential Influences of Wind-Blown Sand Burial on Bacterial and Fungal Communities Inhabiting Biological Soil Crusts in a Temperate Desert, China.
    Jia R; Gao Y; Zhao L; Zhang T; Guo H; You W; Duan Y
    Microorganisms; 2022 Oct; 10(10):. PubMed ID: 36296286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-inoculation of fungi and desert cyanobacteria facilitates biological soil crust formation and soil fertility.
    Zhou X; Liang B; Zhang T; Xiong Q; Ma X; Chen L
    Front Microbiol; 2024; 15():1377732. PubMed ID: 38650889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyanobacterial diversity of biological soil crusts and soil properties in karst desertification area.
    Chen Q; Yan N; Xiong K; Zhao J
    Front Microbiol; 2023; 14():1113707. PubMed ID: 36992925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains, Antarctica.
    Pushkareva E; Pessi IS; Namsaraev Z; Mano MJ; Elster J; Wilmotte A
    Syst Appl Microbiol; 2018 Jul; 41(4):363-373. PubMed ID: 29452715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils.
    Maestre FT; Martín N; Díez B; López-Poma R; Santos F; Luque I; Cortina J
    Microb Ecol; 2006 Oct; 52(3):365-77. PubMed ID: 16710791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau.
    Redfield E; Barns SM; Belnap J; Daane LL; Kuske CR
    FEMS Microbiol Ecol; 2002 Apr; 40(1):55-63. PubMed ID: 19709211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Niche Filtering of Bacteria in Soil and Rock Habitats of the Colorado Plateau Desert, Utah, USA.
    Lee KC; Archer SD; Boyle RH; Lacap-Bugler DC; Belnap J; Pointing SB
    Front Microbiol; 2016; 7():1489. PubMed ID: 27725810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large Blooms of
    Karaoz U; Couradeau E; da Rocha UN; Lim HC; Northen T; Garcia-Pichel F; Brodie EL
    mBio; 2018 Mar; 9(2):. PubMed ID: 29511079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.