These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32731173)

  • 21. Product regulation and catalyst deactivation during ex-situ catalytic fast pyrolysis of biomass over Nickel-Molybdenum bimetallic modified micro-mesoporous zeolites and clays.
    Xue S; Luo Z; Sun H; Zhu W
    Bioresour Technol; 2022 Nov; 364():128081. PubMed ID: 36216279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating.
    Duan D; Wang Y; Dai L; Ruan R; Zhao Y; Fan L; Tayier M; Liu Y
    Bioresour Technol; 2017 Oct; 241():207-213. PubMed ID: 28570885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review on lignin pyrolysis: pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency.
    Lu X; Gu X
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):106. PubMed ID: 36221137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microwave-assisted catalytic fast pyrolysis of rice husk over a hierarchical HZSM-5/MCM-41 catalyst prepared by organic base alkaline solutions.
    Li Z; Zhong Z; Zhang B; Wang W; Zhao H; Seufitelli GVS; Resende FLP
    Sci Total Environ; 2021 Jan; 750():141215. PubMed ID: 32862000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic fast pyrolysis of waste mixed cloth for the production of value-added chemicals.
    Zhang J; Gu J; Yuan H; Chen Y
    Waste Manag; 2021 May; 127():141-146. PubMed ID: 33933871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst.
    Shao Y; Xia Q; Dong L; Liu X; Han X; Parker SF; Cheng Y; Daemen LL; Ramirez-Cuesta AJ; Yang S; Wang Y
    Nat Commun; 2017 Jul; 8():16104. PubMed ID: 28737172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic conversion of lignin pyrolysis model compound- guaiacol and its kinetic model including coke formation.
    Zhang H; Wang Y; Shao S; Xiao R
    Sci Rep; 2016 Nov; 6():37513. PubMed ID: 27869228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of Nickel Supported on Water-Tolerant Nb
    Leal GF; Lima S; Graça I; Carrer H; Barrett DH; Teixeira-Neto E; Curvelo AAS; Rodella CB; Rinaldi R
    iScience; 2019 May; 15():467-488. PubMed ID: 31125909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of aromatic hydrocarbons through catalytic pyrolysis of 5-Hydroxymethylfurfural from biomass.
    Zhao Y; Pan T; Zuo Y; Guo QX; Fu Y
    Bioresour Technol; 2013 Nov; 147():37-42. PubMed ID: 23994304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels.
    Xu X; Zhang C; Liu Y; Zhai Y; Zhang R
    Chemosphere; 2013 Oct; 93(4):652-60. PubMed ID: 23876507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative study on pyrolysis of bamboo in microwave pyrolysis-reforming reaction by binary compound impregnation and chemical liquid deposition modified HZSM-5.
    Du H; Zhong Z; Zhang B; Shi K; Li Z
    J Environ Sci (China); 2020 Aug; 94():186-196. PubMed ID: 32563483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic pyrolysis of soda lignin over zeolites using pyrolysis gas chromatography-mass spectrometry.
    Kumar A; Kumar A; Kumar J; Bhaskar T
    Bioresour Technol; 2019 Nov; 291():121822. PubMed ID: 31352163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic level identification of ZSM-5 on biomass pyrolysis and aromatic hydrocarbon formation.
    Chen WH; Cheng CL; Lee KT; Lam SS; Ong HC; Ok YS; Saeidi S; Sharma AK; Hsieh TH
    Chemosphere; 2021 May; 271():129510. PubMed ID: 33434827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insight into the Ex Situ Catalytic Pyrolysis of Biomass over Char Supported Metals Catalyst: Syngas Production and Tar Decomposition.
    Hu M; Cui B; Xiao B; Luo S; Guo D
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A critical view on catalytic pyrolysis of biomass.
    Venderbosch RH
    ChemSusChem; 2015 Apr; 8(8):1306-16. PubMed ID: 25872757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Converting polycarbonate and polystyrene plastic wastes intoaromatic hydrocarbons via catalytic fast co-pyrolysis.
    Wang J; Jiang J; Wang X; Wang R; Wang K; Pang S; Zhong Z; Sun Y; Ruan R; Ragauskas AJ
    J Hazard Mater; 2020 Mar; 386():121970. PubMed ID: 31887562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insight into the role of varied acid-base sites on fast pyrolysis kinetics and mechanism of cellulose.
    Li C; Zhang J; Gu J; Yuan H; Chen Y
    Waste Manag; 2021 Nov; 135():140-149. PubMed ID: 34507185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin.
    Fan L; Chen P; Zhou N; Liu S; Zhang Y; Liu Y; Wang Y; Omar MM; Peng P; Addy M; Cheng Y; Ruan R
    Bioresour Technol; 2018 Jan; 247():851-858. PubMed ID: 30060422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst.
    Liu S; Xie Q; Zhang B; Cheng Y; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2016 Mar; 204():164-170. PubMed ID: 26773959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Products distribution during in situ and ex situ catalytic fast pyrolysis of Chinese herb residues.
    Li B; Qian Z; Qin J; He Q; Huang S; Dong H; Zhou N; Xia M; Zhou Z
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):89235-89244. PubMed ID: 35849227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.