These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32731205)

  • 1. Linear interband optical refraction and absorption in strained black phosphorene.
    Yarmohammadi M; Mortezaei Nobahari M; Tien TS; Phuong LTT
    J Phys Condens Matter; 2020 Aug; 32(46):. PubMed ID: 32731205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical interband transitions in strained phosphorene.
    Khang PD; Davoudiniya M; Phuong LTT; Phong TC; Yarmohammadi M
    Phys Chem Chem Phys; 2019 Jul; 21(27):15133-15141. PubMed ID: 31243415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical study on strain tunable electronic structure and optical transitions in armchair black phosphorene nanoribbons.
    Liu P; Zhou X; Xiao X; Zhou B; Zhou G
    J Phys Condens Matter; 2020 Jul; 32(28):285301. PubMed ID: 32150733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic competition between strain and electric field stimuli in tuning EELS of phosphorene.
    Yarmohammadi M; Hoi BD; Phuong LTT
    Sci Rep; 2021 Feb; 11(1):3716. PubMed ID: 33580112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain engineering of optical activity in phosphorene.
    Khoa DQ; Davoudiniya M; Hoi BD; Yarmohammadi M
    RSC Adv; 2019 Jun; 9(33):19006-19015. PubMed ID: 35516876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.
    Hu T; Han Y; Dong J
    Nanotechnology; 2014 Nov; 25(45):455703. PubMed ID: 25333269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Straintronics in phosphorene via tensile vs shear strains and their combinations for manipulating the band gap.
    Solomenko AG; Sahalianov IY; Radchenko TM; Tatarenko VA
    Sci Rep; 2023 Aug; 13(1):13444. PubMed ID: 37596330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band-gap tunability and dynamical instability in strained monolayer and bilayer phosphorenes.
    Huang GQ; Xing ZW
    J Phys Condens Matter; 2015 May; 27(17):175006. PubMed ID: 25835749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of spin-orbit coupling on transmission and absorption of electromagnetic waves in strained armchair phosphorene nanoribbons.
    Rezania H; Abdi M; Nourian E; Astinchap B
    RSC Adv; 2023 Jul; 13(32):22287-22301. PubMed ID: 37492510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hittorf's violet phosphorene as a promising candidate for optoelectronic and photocatalytic applications: first-principles characterization.
    Lu YL; Dong S; Zhou W; Dai S; Zhou B; Zhao H; Wu P
    Phys Chem Chem Phys; 2018 May; 20(17):11967-11975. PubMed ID: 29670965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconductor to metal transition in bilayer phosphorene under normal compressive strain.
    Manjanath A; Samanta A; Pandey T; Singh AK
    Nanotechnology; 2015 Feb; 26(7):075701. PubMed ID: 25609574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles studies of the strain-induced band-gap tuning in black phosphorene.
    Galicia Hernandez JM; Sanchez JG; Fernandez Escamilla HN; Cocoletzi GH; Takeuchi N
    J Phys Condens Matter; 2021 Apr; 33(17):. PubMed ID: 33470975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the Electronic and Optical Properties of the Novel Monolayer Noble-Transition-Metal Dichalcogenides Semiconductor β-AuSe via Strain: A Computational Investigation.
    Chen QY; Zhao BR; Zhao YF; Yang H; Xiong K; He Y
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain Effects on the Electronic and Optical Properties of Blue Phosphorene.
    Zhang L; Cui Z
    Front Chem; 2022; 10():951870. PubMed ID: 35873045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-tunable electronic and optical properties of novel anisotropic green phosphorene: a first-principles study.
    Chen QY; Liu MY; Cao C; He Y
    Nanotechnology; 2019 Aug; 30(33):335710. PubMed ID: 31035273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic vacancy defects and mechanical strain for the modulation of the mechanical, electronic and optical properties of monolayer tungsten disulfide.
    Gao C; Yang X; Jiang M; Chen L; Chen Z; Singh CV
    Phys Chem Chem Phys; 2021 Mar; 23(10):6298-6308. PubMed ID: 33688866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of strain on the electronic, optical, and ferroelectric transition properties of HfO
    Wu J
    J Phys Condens Matter; 2021 Jun; 33(29):. PubMed ID: 33975286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-splitting effects on the interband optical conductivity and activity of phosphorene.
    Phuong LTT; Phong TC; Yarmohammadi M
    Sci Rep; 2020 Jun; 10(1):9201. PubMed ID: 32513921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Electronic Properties of Few-Layer Tellurene under In-Plane and Out-of-Plane Uniaxial Strain.
    Wang G; Ding Y; Guan Y; Wang Y; Yang L
    Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band gap engineering of FeS2 under biaxial strain: a first principles study.
    Xiao P; Fan XL; Liu LM; Lau WM
    Phys Chem Chem Phys; 2014 Nov; 16(44):24466-72. PubMed ID: 25308322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.