These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32731437)

  • 1. Enhancement of Biomass and Calcium Carbonate Biomineralization of
    Chin ZW; Arumugam K; Ashari SE; Faizal Wong FW; Tan JS; Ariff AB; Mohamed MS
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32731437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of Biomineralization of
    Han PP; Geng WJ; Li MN; Jia SR; Yin JL; Xue RZ
    J Microbiol Biotechnol; 2021 Sep; 31(9):1311-1322. PubMed ID: 34319256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii.
    Ma L; Pang AP; Luo Y; Lu X; Lin F
    Microb Cell Fact; 2020 Jan; 19(1):12. PubMed ID: 31973723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced calcium carbonate precipitation using Bacillus species.
    Seifan M; Samani AK; Berenjian A
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):9895-9906. PubMed ID: 27392449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26.
    Ramírez-López C; Chairez I; Fernández-Linares L
    Bioresour Technol; 2016 Jul; 212():207-216. PubMed ID: 27099946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs.
    Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B
    Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel.
    El-Sheekh MM; Gheda SF; El-Sayed AEB; Abo Shady AM; El-Sheikh ME; Schagerl M
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18520-18532. PubMed ID: 31049862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface.
    Ghosh T; Bhaduri S; Montemagno C; Kumar A
    PLoS One; 2019; 14(1):e0210339. PubMed ID: 30699142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Optimization of the Production of Organic Selenium and Cell Biomass in
    Zare H; Owlia P; Vahidi H; Hosseindokht Khujin M
    Iran J Pharm Res; 2018; 17(3):1081-1092. PubMed ID: 30127830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of bacterial sporulation using economic nutrient for self-healing concrete.
    Ryu Y; Lee KE; Cha IT; Park W
    J Microbiol; 2020 Apr; 58(4):288-296. PubMed ID: 32103443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dairy manure pellets and palm oil mill effluent as alternative nutrient sources in cultivating Sporosarcina pasteurii for calcium carbonate bioprecipitation.
    Omoregie AI; Muda K; Ngu LH
    Lett Appl Microbiol; 2022 May; 74(5):671-683. PubMed ID: 35032053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production.
    Wong YK; Ho YH; Ho KC; Leung HM; Yung KK
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9089-9101. PubMed ID: 27975198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomineralization of metal carbonates by Neurospora crassa.
    Li Q; Csetenyi L; Gadd GM
    Environ Sci Technol; 2014 Dec; 48(24):14409-16. PubMed ID: 25423300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomineralization processes of calcite induced by bacteria isolated from marine sediments.
    Wei S; Cui H; Jiang Z; Liu H; He H; Fang N
    Braz J Microbiol; 2015 Jun; 46(2):455-64. PubMed ID: 26273260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell Growth, Lipid Production and Productivity in Photosynthetic Microalga Chlorella vulgaris under Different Nitrogen Concentrations and Culture Media Replacement.
    Morowvat MH; Ghasemi Y
    Recent Pat Food Nutr Agric; 2018; 9(2):142-151. PubMed ID: 29886843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology.
    Aguirre AM; Bassi A
    Biotechnol Bioeng; 2013 Aug; 110(8):2114-22. PubMed ID: 23436332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.
    Okyay TO; Rodrigues DF
    FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25764465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris.
    Alketife AM; Judd S; Znad H
    Environ Technol; 2017 Jan; 38(1):94-102. PubMed ID: 27152999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of diluted urine for cultivation of Chlorella vulgaris.
    Jaatinen S; Lakaniemi AM; Rintala J
    Environ Technol; 2016; 37(9):1159-70. PubMed ID: 26508358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.