These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 32731570)

  • 1. Rapid Fabrication of Membrane-Integrated Thermoplastic Elastomer Microfluidic Devices.
    McMillan AH; Thomée EK; Dellaquila A; Nassman H; Segura T; Lesher-Pérez SC
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32731570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for Microfluidic Cell Culture and Organ-on-Chip.
    Schneider S; Brás EJS; Schneider O; Schlünder K; Loskill P
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34070209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic device fabrication by thermoplastic hot-embossing.
    Yang S; Devoe DL
    Methods Mol Biol; 2013; 949():115-23. PubMed ID: 23329439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic device fabrication mediated by surface chemical bonding.
    Sivakumar R; Lee NY
    Analyst; 2020 Jun; 145(12):4096-4110. PubMed ID: 32451519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoplastic elastomer with advanced hydrophilization and bonding performances for rapid (30 s) and easy molding of microfluidic devices.
    Lachaux J; Alcaine C; Gómez-Escoda B; Perrault CM; Duplan DO; Wu PJ; Ochoa I; Fernandez L; Mercier O; Coudreuse D; Roy E
    Lab Chip; 2017 Jul; 17(15):2581-2594. PubMed ID: 28656191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PMMA Solution Assisted Room Temperature Bonding for PMMA⁻PC Hybrid Devices.
    Song IH; Park T
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-pressure on-chip mechanical valves for thermoplastic microfluidic devices.
    Chen CF; Liu J; Chang CC; DeVoe DL
    Lab Chip; 2009 Dec; 9(24):3511-6. PubMed ID: 20024030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of polyurethane as an elastomer in thermoplastic microfluidic devices and the study of its creep properties.
    Gu P; Nishida T; Fan ZH
    Electrophoresis; 2014 Feb; 35(2-3):289-97. PubMed ID: 23868507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inexpensive, rapid fabrication of polymer-film microfluidic autoregulatory valve for disposable microfluidics.
    Zhang X; Zhu Z; Ni Z; Xiang N; Yi H
    Biomed Microdevices; 2017 Jun; 19(2):21. PubMed ID: 28367599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetrafluoroethylene-Propylene Elastomer for Fabrication of Microfluidic Organs-on-Chips Resistant to Drug Absorption.
    Sano E; Mori C; Matsuoka N; Ozaki Y; Yagi K; Wada A; Tashima K; Yamasaki S; Tanabe K; Yano K; Torisawa YS
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31752314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite Elastomer-Enabled Rapid Photofabrication of Microfluidic Devices.
    Zhu F; He Y; Lu Z; Fan H; Zhang T
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37589-37597. PubMed ID: 34327981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PDMS-based porous membrane for medical applications: design, development, and fabrication.
    Keshtiban MM; Zand MM; Ebadi A; Azizi Z
    Biomed Mater; 2023 May; 18(4):. PubMed ID: 36808922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally robust and biomolecule-friendly room-temperature bonding for the fabrication of elastomer-plastic hybrid microdevices.
    Nguyen TP; Tran BM; Lee NY
    Lab Chip; 2016 Aug; 16(17):3251-9. PubMed ID: 27412355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoplastic Elastomer (TPE)-Poly(Methyl Methacrylate) (PMMA) Hybrid Devices for Active Pumping PDMS-Free Organ-on-a-Chip Systems.
    Busek M; Nøvik S; Aizenshtadt A; Amirola-Martinez M; Combriat T; Grünzner S; Krauss S
    Biosensors (Basel); 2021 May; 11(5):. PubMed ID: 34069506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Step Fabrication of Microchannels with Integrated Three Dimensional Features by Hot Intrusion Embossing.
    Debono M; Voicu D; Pousti M; Safdar M; Young R; Kumacheva E; Greener J
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27916849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.