BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32731581)

  • 1. Influence of Interactions among Polymeric Components of Automobile Shredder Residue on the Pyrolysis Temperature and Characterization of Pyrolytic Products.
    Yang B; Chen M
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32731581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Py-FTIR-GC/MS Analysis of Volatile Products of Automobile Shredder Residue Pyrolysis.
    Yang B; Chen M
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33217995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on pyrolysis and gasification of automobile shredder residue in China.
    Ni F; Chen M
    Waste Manag Res; 2014 Oct; 32(10):980-7. PubMed ID: 25323144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on the low-temperature pyrolysis of automotive shredder residue (ASR) for energy recovery and metal recycling.
    Evangelopoulos P; Sophonrat N; Jilvero H; Yang W
    Waste Manag; 2018 Jun; 76():507-515. PubMed ID: 29628362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis and gasification-melting of automobile shredder residue.
    Roh SA; Kim WH; Yun JH; Min TJ; Kwak YH; Seo YC
    J Air Waste Manag Assoc; 2013 Oct; 63(10):1137-47. PubMed ID: 24282966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary investigation on the thermal conversion of automotive shredder residue into value-added products: Graphitic carbon and nano-ceramics.
    Mayyas M; Pahlevani F; Handoko W; Sahajwalla V
    Waste Manag; 2016 Apr; 50():173-83. PubMed ID: 26876777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification.
    Donaj P; Yang W; Błasiak W; Forsgren C
    J Hazard Mater; 2010 Oct; 182(1-3):80-9. PubMed ID: 20580160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TG-MS study of the thermo-oxidative behavior of plastic automobile shredder residues.
    Guo Q; Zhang X; Li C; Liu X; Li J
    J Hazard Mater; 2012 Mar; 209-210():443-8. PubMed ID: 22316686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility study on co-processing of automobile shredder residue in coal-fired power plants via pyrolysis.
    Ren Y; Cao C; Cheng Y; Hu H; Liu H; Li X; Liu H; Yao H
    Waste Manag; 2022 Apr; 143():135-143. PubMed ID: 35255447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis of automotive shredder residue in a bench scale rotary kiln.
    Notarnicola M; Cornacchia G; De Gisi S; Di Canio F; Freda C; Garzone P; Martino M; Valerio V; Villone A
    Waste Manag; 2017 Jul; 65():92-103. PubMed ID: 28410890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and speciation transformation of chlorine during automobile shredder residue pyrolysis.
    Ren Y; Hu H; Cao C; Guo G; Zeng X; Zou C; Li X; Yao H
    Waste Manag; 2024 Feb; 174():320-327. PubMed ID: 38091656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conventional and fast pyrolysis of automobile shredder residues (ASR).
    Zolezzi M; Nicolella C; Ferrara S; Iacobucci C; Rovatti M
    Waste Manag; 2004; 24(7):691-9. PubMed ID: 15288301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis of Automotive Shredder Residue (ASR): Thermogravimetry, In-Situ Synchrotron IR and Gas-Phase IR of Polymeric Components.
    Kohli I; Srivatsa SC; Das O; Devasahayam S; Singh Raman RK; Bhattacharya S
    Polymers (Basel); 2023 Sep; 15(17):. PubMed ID: 37688277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meeting EU ELV targets: Pilot-scale pyrolysis automotive shredder residue investigation of PAHs, PCBs and environmental contaminants in the solid residue products.
    Williams KS; Khodier A
    Waste Manag; 2020 Mar; 105():233-239. PubMed ID: 32088569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waste conversion into high-value ceramics: Carbothermal nitridation synthesis of titanium nitride nanoparticles using automotive shredder waste.
    Mayyas M; Pahlevani F; Maroufi S; Liu Z; Sahajwalla V
    J Environ Manage; 2017 Mar; 188():32-42. PubMed ID: 27923163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of oxygen, catalyst and PVC on the formation of PCDDs, PCDFs and dioxin-like PCBs in pyrolysis products of automobile residues.
    Joung HT; Seo YC; Kim KH; Seo YC
    Chemosphere; 2006 Nov; 65(9):1481-9. PubMed ID: 16740293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion.
    Stolarek P; Ledakowicz S
    Water Sci Technol; 2001; 44(10):333-9. PubMed ID: 11794675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis of tyre powder using microwave thermogravimetric analysis: Effect of microwave power.
    Song Z; Yang Y; Zhou L; Zhao X; Wang W; Mao Y; Ma C
    Waste Manag Res; 2017 Feb; 35(2):181-189. PubMed ID: 27515667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lab-scale pyrolysis of the Automotive Shredder Residue light fraction and characterization of tar and solid products.
    Anzano M; Collina E; Piccinelli E; Lasagni M
    Waste Manag; 2017 Jun; 64():263-271. PubMed ID: 28318960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pollutant formation in the pyrolysis and combustion of Automotive Shredder Residue.
    Rey L; Conesa JA; Aracil I; Garrido MA; Ortuño N
    Waste Manag; 2016 Oct; 56():376-83. PubMed ID: 27497585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.