BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32731608)

  • 1. Single Residue Substitution at
    Bukhari N; Leow ATC; Abd Rahman RNZR; Mohd Shariff F
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32731608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach.
    Sani HA; Shariff FM; Rahman RNZRA; Leow TC; Salleh AB
    Mol Biotechnol; 2018 Jan; 60(1):1-11. PubMed ID: 29058211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering lipases for temperature adaptation: Structure function correlation.
    Kumar R; Goomber S; Kaur J
    Biochim Biophys Acta Proteins Proteom; 2019 Nov; 1867(11):140261. PubMed ID: 31401312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds.
    Li G; Fang X; Su F; Chen Y; Xu L; Yan Y
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200
    [No Abstract]   [Full Text] [Related]  

  • 5. Directed Evolution of Recombinant C-Terminal Truncated Staphylococcus epidermidis Lipase AT2 for the Enhancement of Thermostability.
    Veno J; Ahmad Kamarudin NH; Mohamad Ali MS; Masomian M; Raja Abd Rahman RNZ
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29113034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of K173A substitution enhances thermostability coupled with catalytic activity of Enterobacter sp. Bn12 lipase.
    Farrokh P; Yakhchali B; Karkhane AA
    J Mol Microbiol Biotechnol; 2014; 24(4):262-9. PubMed ID: 25277599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substitution of Asp189 residue alters the activity and thermostability of Geobacillus sp. NTU 03 lipase.
    Shih TW; Pan TM
    Biotechnol Lett; 2011 Sep; 33(9):1841-6. PubMed ID: 21544610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Surface Exposed Lysine in Conformational Stability and Functional Properties of Lipase from
    Ahmad NN; Ahmad Kamarudin NH; Leow ATC; Rahman RNZRA
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32854267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.
    Mohammadi M; Sepehrizadeh Z; Ebrahim-Habibi A; Shahverdi AR; Faramarzi MA; Setayesh N
    Enzyme Microb Technol; 2016 Nov; 93-94():18-28. PubMed ID: 27702479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial reshaping of a lipase structure for thermostability: additive role of surface stabilizing single point mutations.
    Kumar R; Singh R; Kaur J
    Biochem Biophys Res Commun; 2014 May; 447(4):626-32. PubMed ID: 24751523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Q177A and K173A/Q177A substitutions in thermostability and activity of the ELBn12 lipase.
    Farrokh P; Yakhchali B; Karkhane AA
    Biotechnol Appl Biochem; 2018 Mar; 65(2):203-211. PubMed ID: 28722269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of a Yarrowia lipolytica derived lipase for improved thermostability.
    Zhang H; Sang J; Zhang Y; Sun T; Liu H; Yue R; Zhang J; Wang H; Dai Y; Lu F; Liu F
    Int J Biol Macromol; 2019 Sep; 137():1190-1198. PubMed ID: 31299254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the thermostability of Rhizopus chinensis lipase by rational design and MD simulations.
    Wang R; Wang S; Xu Y; Yu X
    Int J Biol Macromol; 2020 Oct; 160():1189-1200. PubMed ID: 32485250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of Bacillus lipase by directed evolution for enhanced thermal stability: effect of isoleucine to threonine mutation at protein surface.
    Khurana J; Singh R; Kaur J
    Mol Biol Rep; 2011 Jun; 38(5):2919-26. PubMed ID: 20127521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Point mutation Arg153-His at surface of Bacillus lipase contributing towards increased thermostability and ester synthesis: insight into molecular network.
    Chopra N; Kaur J
    Mol Cell Biochem; 2018 Jun; 443(1-2):159-168. PubMed ID: 29086164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into Improved Thermostability of Cold-Adapted Staphylococcal Lipase by Glycine to Cysteine Mutation.
    Veno J; Rahman RNZRA; Masomian M; Ali MSM; Kamarudin NHA
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31480403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Catalytic Activity and Thermostability of MAS1 Lipase by Alanine Substitution.
    Zhao G; Wang J; Tang Q; Lan D; Wang Y
    Mol Biotechnol; 2018 Apr; 60(4):319-328. PubMed ID: 29450814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution.
    Zhang N; Suen WC; Windsor W; Xiao L; Madison V; Zaks A
    Protein Eng; 2003 Aug; 16(8):599-605. PubMed ID: 12968077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability.
    Wu JP; Li M; Zhou Y; Yang LR; Xu G
    Biotechnol Lett; 2015 Feb; 37(2):403-7. PubMed ID: 25257598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of Thermostability, Organic Solvent, and pH Stability in
    Ishak SNH; Masomian M; Kamarudin NHA; Ali MSM; Leow TC; Rahman RNZRA
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.