BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32731881)

  • 1. A pipeline for complete characterization of complex germline rearrangements from long DNA reads.
    Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N
    Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-read DNA sequencing fully characterized chromothripsis in a patient with Langer-Giedion syndrome and Cornelia de Lange syndrome-4.
    Lei M; Liang D; Yang Y; Mitsuhashi S; Katoh K; Miyake N; Frith MC; Wu L; Matsumoto N
    J Hum Genet; 2020 Aug; 65(8):667-674. PubMed ID: 32296131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developmental disorders.
    Schluth-Bolard C; Diguet F; Chatron N; Rollat-Farnier PA; Bardel C; Afenjar A; Amblard F; Amiel J; Blesson S; Callier P; Capri Y; Collignon P; Cordier MP; Coubes C; Demeer B; Chaussenot A; Demurger F; Devillard F; Doco-Fenzy M; Dupont C; Dupont JM; Dupuis-Girod S; Faivre L; Gilbert-Dussardier B; Guerrot AM; Houlier M; Isidor B; Jaillard S; Joly-Hélas G; Kremer V; Lacombe D; Le Caignec C; Lebbar A; Lebrun M; Lesca G; Lespinasse J; Levy J; Malan V; Mathieu-Dramard M; Masson J; Masurel-Paulet A; Mignot C; Missirian C; Morice-Picard F; Moutton S; Nadeau G; Pebrel-Richard C; Odent S; Paquis-Flucklinger V; Pasquier L; Philip N; Plutino M; Pons L; Portnoï MF; Prieur F; Puechberty J; Putoux A; Rio M; Rooryck-Thambo C; Rossi M; Sarret C; Satre V; Siffroi JP; Till M; Touraine R; Toutain A; Toutain J; Valence S; Verloes A; Whalen S; Edery P; Tabet AC; Sanlaville D
    J Med Genet; 2019 Aug; 56(8):526-535. PubMed ID: 30923172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.
    Collins RL; Brand H; Redin CE; Hanscom C; Antolik C; Stone MR; Glessner JT; Mason T; Pregno G; Dorrani N; Mandrile G; Giachino D; Perrin D; Walsh C; Cipicchio M; Costello M; Stortchevoi A; An JY; Currall BB; Seabra CM; Ragavendran A; Margolin L; Martinez-Agosto JA; Lucente D; Levy B; Sanders SJ; Wapner RJ; Quintero-Rivera F; Kloosterman W; Talkowski ME
    Genome Biol; 2017 Mar; 18(1):36. PubMed ID: 28260531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis.
    Boeva V; Jouannet S; Daveau R; Combaret V; Pierre-Eugène C; Cazes A; Louis-Brennetot C; Schleiermacher G; Ferrand S; Pierron G; Lermine A; Rio Frio T; Raynal V; Vassal G; Barillot E; Delattre O; Janoueix-Lerosey I
    PLoS One; 2013; 8(8):e72182. PubMed ID: 23991058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catastrophic cellular events leading to complex chromosomal rearrangements in the germline.
    Fukami M; Shima H; Suzuki E; Ogata T; Matsubara K; Kamimaki T
    Clin Genet; 2017 May; 91(5):653-660. PubMed ID: 27888607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolving complex structural genomic rearrangements using a randomized approach.
    Zhao X; Emery SB; Myers B; Kidd JM; Mills RE
    Genome Biol; 2016 Jun; 17(1):126. PubMed ID: 27287201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving Breakpoints of Chromosomal Rearrangements at the Nucleotide Level Using Sanger Sequencing.
    Nalbandian K; Piña-Aguilar RE; Morton CC
    Curr Protoc Hum Genet; 2020 Dec; 108(1):e107. PubMed ID: 33369263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyses of breakpoint junctions of complex genomic rearrangements comprising multiple consecutive microdeletions by nanopore sequencing.
    Imaizumi T; Yamamoto-Shimojima K; Yanagishita T; Ondo Y; Yamamoto T
    J Hum Genet; 2020 Sep; 65(9):735-741. PubMed ID: 32355308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic and functional overlap between somatic and germline chromosomal rearrangements.
    van Heesch S; Simonis M; van Roosmalen MJ; Pillalamarri V; Brand H; Kuijk EW; de Luca KL; Lansu N; Braat AK; Menelaou A; Hao W; Korving J; Snijder S; van der Veken LT; Hochstenbach R; Knegt AC; Duran K; Renkens I; Alekozai N; Jager M; Vergult S; Menten B; de Bruijn E; Boymans S; Ippel E; van Binsbergen E; Talkowski ME; Lichtenbelt K; Cuppen E; Kloosterman WP
    Cell Rep; 2014 Dec; 9(6):2001-10. PubMed ID: 25497101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering balanced translocations in infertile males by next-generation sequencing to identify candidate genes for spermatogenesis disorders.
    Yammine T; Reynaud N; Lejeune H; Diguet F; Rollat-Farnier PA; Labalme A; Plotton I; Farra C; Sanlaville D; Chouery E; Schluth-Bolard C
    Mol Hum Reprod; 2021 May; 27(6):. PubMed ID: 34009290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Structural Variation: Mechanisms of Chromosome Rearrangements.
    Weckselblatt B; Rudd MK
    Trends Genet; 2015 Oct; 31(10):587-599. PubMed ID: 26209074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balanced Chromosomal Rearrangement Detection by Low-Pass Whole-Genome Sequencing.
    Dong Z; Ye L; Yang Z; Chen H; Yuan J; Wang H; Guo X; Li Y; Wang J; Chen F; Cheung SW; Morton CC; Jiang H; Choy KW
    Curr Protoc Hum Genet; 2018 Jan; 96():8.18.1-8.18.16. PubMed ID: 29364520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplification and thrifty single-molecule sequencing of recurrent somatic structural variations.
    Patel A; Schwab R; Liu YT; Bafna V
    Genome Res; 2014 Feb; 24(2):318-28. PubMed ID: 24307551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis.
    Weckselblatt B; Hermetz KE; Rudd MK
    Genome Res; 2015 Jul; 25(7):937-47. PubMed ID: 26070663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-genome sequencing reveals complex chromosome rearrangement disrupting NIPBL in infant with Cornelia de Lange syndrome.
    Plesser Duvdevani M; Pettersson M; Eisfeldt J; Avraham O; Dagan J; Frumkin A; Lupski JR; Lindstrand A; Harel T
    Am J Med Genet A; 2020 May; 182(5):1143-1151. PubMed ID: 32125084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replicative and non-replicative mechanisms in the formation of clustered CNVs are indicated by whole genome characterization.
    Nazaryan-Petersen L; Eisfeldt J; Pettersson M; Lundin J; Nilsson D; Wincent J; Lieden A; Lovmar L; Ottosson J; Gacic J; Mäkitie O; Nordgren A; Vezzi F; Wirta V; Käller M; Hjortshøj TD; Jespersgaard C; Houssari R; Pignata L; Bak M; Tommerup N; Lundberg ES; Tümer Z; Lindstrand A
    PLoS Genet; 2018 Nov; 14(11):e1007780. PubMed ID: 30419018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PacBio-LITS: a large-insert targeted sequencing method for characterization of human disease-associated chromosomal structural variations.
    Wang M; Beck CR; English AC; Meng Q; Buhay C; Han Y; Doddapaneni HV; Yu F; Boerwinkle E; Lupski JR; Muzny DM; Gibbs RA
    BMC Genomics; 2015 Mar; 16(1):214. PubMed ID: 25887218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms.
    Malhotra A; Lindberg M; Faust GG; Leibowitz ML; Clark RA; Layer RM; Quinlan AR; Hall IM
    Genome Res; 2013 May; 23(5):762-76. PubMed ID: 23410887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient multifocal genomic crisis creating chromothriptic and non-chromothriptic rearrangements in prezygotic testicular germ cells.
    Hattori A; Okamura K; Terada Y; Tanaka R; Katoh-Fukui Y; Matsubara Y; Matsubara K; Kagami M; Horikawa R; Fukami M
    BMC Med Genomics; 2019 May; 12(1):77. PubMed ID: 31138192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.