These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 32732029)
1. Improving the catalytic activity of thermostable xylanase from Thermotoga maritima via mutagenesis of non-catalytic residues at glycone subsites. Yang J; Ma T; Shang-Guan F; Han Z Enzyme Microb Technol; 2020 Sep; 139():109579. PubMed ID: 32732029 [TBL] [Abstract][Full Text] [Related]
2. Understanding the Positional Binding and Substrate Interaction of a Highly Thermostable GH10 Xylanase from Yang J; Han Z Biomolecules; 2018 Jul; 8(3):. PubMed ID: 30061529 [TBL] [Abstract][Full Text] [Related]
3. Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8. Ihsanawati ; Kumasaka T; Kaneko T; Morokuma C; Yatsunami R; Sato T; Nakamura S; Tanaka N Proteins; 2005 Dec; 61(4):999-1009. PubMed ID: 16247799 [TBL] [Abstract][Full Text] [Related]
4. Impact of orientation of carbohydrate binding modules family 22 and 6 on the catalytic activity of Thermotoga maritima xylanase XynB. Tajwar R; Shahid S; Zafar R; Akhtar MW Enzyme Microb Technol; 2017 Nov; 106():75-82. PubMed ID: 28859813 [TBL] [Abstract][Full Text] [Related]
5. [High-level expression of an extreme-thermostable xylanase B from Thermotoga maritima MSB8 in Escherichia coli and Pichia pastoris]. Yang MH; Li Y; Guan GH; Jiang ZQ Wei Sheng Wu Xue Bao; 2005 Apr; 45(2):236-40. PubMed ID: 15989268 [TBL] [Abstract][Full Text] [Related]
6. Truncated derivatives of a multidomain thermophilic glycosyl hydrolase family 10 xylanase from Thermotoga maritima reveal structure related activity profiles and substrate hydrolysis patterns. Verjans P; Dornez E; Segers M; Van Campenhout S; Bernaerts K; Beliën T; Delcour JA; Courtin CM J Biotechnol; 2010 Jan; 145(2):160-7. PubMed ID: 19883701 [TBL] [Abstract][Full Text] [Related]
7. Comparative characterization of deletion derivatives of the modular xylanase XynA of Thermotoga maritima. Kleine J; Liebl W Extremophiles; 2006 Oct; 10(5):373-81. PubMed ID: 16550304 [TBL] [Abstract][Full Text] [Related]
9. Engineering the thermostability of a TIM-barrel enzyme by rational family shuffling. Kamondi S; Szilágyi A; Barna L; Závodszky P Biochem Biophys Res Commun; 2008 Oct; 374(4):725-30. PubMed ID: 18667161 [TBL] [Abstract][Full Text] [Related]
10. Enhanced catalytic efficiency in quercetin-4'-glucoside hydrolysis of Thermotoga maritima β-glucosidase A by site-directed mutagenesis. Sun H; Xue Y; Lin Y J Agric Food Chem; 2014 Jul; 62(28):6763-70. PubMed ID: 24933681 [TBL] [Abstract][Full Text] [Related]
11. C-Terminal carbohydrate-binding module 9_2 fused to the N-terminus of GH11 xylanase from Aspergillus niger. Xu W; Liu Y; Ye Y; Liu M; Han L; Song A; Liu L Biotechnol Lett; 2016 Oct; 38(10):1739-45. PubMed ID: 27311309 [TBL] [Abstract][Full Text] [Related]
12. Insights into the roles of non-catalytic residues in the active site of a GH10 xylanase with activity on cellulose. Chu Y; Tu T; Penttinen L; Xue X; Wang X; Yi Z; Gong L; Rouvinen J; Luo H; Hakulinen N; Yao B; Su X J Biol Chem; 2017 Nov; 292(47):19315-19327. PubMed ID: 28974575 [TBL] [Abstract][Full Text] [Related]
13. Mutagenesis and subsite mapping underpin the importance for substrate specificity of the aglycon subsites of glycoside hydrolase family 11 xylanases. Pollet A; Lagaert S; Eneyskaya E; Kulminskaya A; Delcour JA; Courtin CM Biochim Biophys Acta; 2010 Apr; 1804(4):977-85. PubMed ID: 20096384 [TBL] [Abstract][Full Text] [Related]
14. Improving catalytic efficiency of endo-β-1, 4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis. Wang Y; Feng S; Zhan T; Huang Z; Wu G; Liu Z J Biotechnol; 2013 Dec; 168(4):341-7. PubMed ID: 24157442 [TBL] [Abstract][Full Text] [Related]
15. High-temperature behavior of hyperthermostable Thermotoga maritima xylanase XYN10B after designed and evolved mutations. Wang Y; Wang J; Zhang Z; Yang J; Turunen O; Xiong H Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):2017-2027. PubMed ID: 35171339 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies. Lai Z; Zhou C; Ma X; Xue Y; Ma Y Int J Biol Macromol; 2021 Feb; 170():164-177. PubMed ID: 33352153 [TBL] [Abstract][Full Text] [Related]
17. Paenibacillus sp. strain E18 bifunctional xylanase-glucanase with a single catalytic domain. Shi P; Tian J; Yuan T; Liu X; Huang H; Bai Y; Yang P; Chen X; Wu N; Yao B Appl Environ Microbiol; 2010 Jun; 76(11):3620-4. PubMed ID: 20382811 [TBL] [Abstract][Full Text] [Related]
18. The contribution of specific subsites to catalytic activities in active site architecture of a GH11 xylanase. Wu X; Zhang S; Zhang Q; Zhao Y; Chen G; Guo W; Wang L Appl Microbiol Biotechnol; 2020 Oct; 104(20):8735-8745. PubMed ID: 32865611 [TBL] [Abstract][Full Text] [Related]
19. Hyperthermostable Thermotoga maritima xylanase XYN10B shows high activity at high temperatures in the presence of biomass-dissolving hydrophilic ionic liquids. Yu T; Anbarasan S; Wang Y; Telli K; Aslan AS; Su Z; Zhou Y; Zhang L; Iivonen P; Havukainen S; Mentunen T; Hummel M; Sixta H; Binay B; Turunen O; Xiong H Extremophiles; 2016 Jul; 20(4):515-24. PubMed ID: 27240671 [TBL] [Abstract][Full Text] [Related]
20. Enhancement in catalytic activity of Aspergillus niger XynB by selective site-directed mutagenesis of active site amino acids. Wu X; Tian Z; Jiang X; Zhang Q; Wang L Appl Microbiol Biotechnol; 2018 Jan; 102(1):249-260. PubMed ID: 29103167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]