These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32732055)

  • 1. Predicting cyanobacterial biovolumes from phycocyanin fluorescence using a handheld fluorometer in the field.
    Thomson-Laing G; Puddick J; Wood SA
    Harmful Algae; 2020 Jul; 97():101869. PubMed ID: 32732055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensor manufacturer, temperature, and cyanobacteria morphology affect phycocyanin fluorescence measurements.
    Hodges CM; Wood SA; Puddick J; McBride CG; Hamilton DP
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1079-1088. PubMed ID: 29079975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source.
    McQuaid N; Zamyadi A; Prévost M; Bird DF; Dorner S
    J Environ Monit; 2011 Feb; 13(2):455-63. PubMed ID: 21157617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor.
    Medina-Cobo M; Domínguez JA; Quesada A; de Hoyos C
    Water Res; 2014 Oct; 63():10-20. PubMed ID: 24971813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced real-time cyanobacterial fluorescence monitoring through chlorophyll-a interference compensation corrections.
    Choo F; Zamyadi A; Stuetz RM; Newcombe G; Newton K; Henderson RK
    Water Res; 2019 Jan; 148():86-96. PubMed ID: 30352324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe.
    Song K; Li L; Tedesco L; Clercin N; Hall B; Li S; Shi K; Liu D; Sun Y
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5330-40. PubMed ID: 23397212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ fluorescence monitoring of cyanobacteria: Laboratory-based quantification of species-specific measurement accuracy.
    Bertone E; Chuang A; Burford MA; Hamilton DP
    Harmful Algae; 2019 Jul; 87():101625. PubMed ID: 31349889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies.
    Brient L; Lengronne M; Bertrand E; Rolland D; Sipel A; Steinmann D; Baudin I; Legeas M; Le Rouzic B; Bormans M
    J Environ Monit; 2008 Feb; 10(2):248-55. PubMed ID: 18246219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of phycocyanin probes for the monitoring of cyanobacteria.
    Bastien C; Cardin R; Veilleux E; Deblois C; Warren A; Laurion I
    J Environ Monit; 2011 Jan; 13(1):110-8. PubMed ID: 21103573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakthrough of cyanobacteria in bank filtration.
    Pazouki P; Prévost M; McQuaid N; Barbeau B; de Boutray ML; Zamyadi A; Dorner S
    Water Res; 2016 Oct; 102():170-179. PubMed ID: 27343842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating microcystin levels at recreational sites in western Lake Erie and Ohio.
    Francy DS; Brady AM; Ecker CD; Graham JL; Stelzer EA; Struffolino P; Dwyer DF; Loftin KA
    Harmful Algae; 2016 Sep; 58():23-34. PubMed ID: 28073455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting cyanobacteria bloom occurrence in lakes and reservoirs before blooms occur.
    Zhao CS; Shao NF; Yang ST; Ren H; Ge YR; Feng P; Dong BE; Zhao Y
    Sci Total Environ; 2019 Jun; 670():837-848. PubMed ID: 30921717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing.
    Gorham T; Jia Y; Shum CK; Lee J
    Harmful Algae; 2017 Jun; 66():13-19. PubMed ID: 28602249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorophyll and phycocyanin in-situ fluorescence in mixed cyanobacterial species assemblages: Effects of morphology, cell size and growth phase.
    Rousso BZ; Bertone E; Stewart R; Aguiar A; Chuang A; Hamilton DP; Burford MA
    Water Res; 2022 Apr; 212():118127. PubMed ID: 35121420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using generalized additive models to investigate factors influencing cyanobacterial abundance through phycocyanin fluorescence in East Lake, China.
    Kuo YM; Yang J; Liu WW; Zhao E; Li R; Yao L
    Environ Monit Assess; 2018 Sep; 190(10):599. PubMed ID: 30238229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant.
    Ahn CY; Joung SH; Yoon SK; Oh HM
    J Microbiol; 2007 Apr; 45(2):98-104. PubMed ID: 17483793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations.
    Bowling LC; Zamyadi A; Henderson RK
    Water Res; 2016 Nov; 105():22-33. PubMed ID: 27592302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of a handheld spectroradiometer for the near real-time measurement of cyanobacteria for bloom management purposes.
    Bowling LC; Shaikh M; Brayan J; Malthus T
    Environ Monit Assess; 2017 Sep; 189(10):495. PubMed ID: 28887739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning for anomaly detection in cyanobacterial fluorescence signals.
    Almuhtaram H; Zamyadi A; Hofmann R
    Water Res; 2021 Jun; 197():117073. PubMed ID: 33784609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources.
    Zamyadi A; McQuaid N; Prévost M; Dorner S
    J Environ Monit; 2012 Feb; 14(2):579-88. PubMed ID: 22159157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.