BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 32732424)

  • 1. DNA capture by a CRISPR-Cas9-guided adenine base editor.
    Lapinaite A; Knott GJ; Palumbo CM; Lin-Shiao E; Richter MF; Zhao KT; Beal PA; Liu DR; Doudna JA
    Science; 2020 Jul; 369(6503):566-571. PubMed ID: 32732424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Status and Challenges of DNA Base Editing Tools.
    Jeong YK; Song B; Bae S
    Mol Ther; 2020 Sep; 28(9):1938-1952. PubMed ID: 32763143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity.
    Richter MF; Zhao KT; Eton E; Lapinaite A; Newby GA; Thuronyi BW; Wilson C; Koblan LW; Zeng J; Bauer DE; Doudna JA; Liu DR
    Nat Biotechnol; 2020 Jul; 38(7):883-891. PubMed ID: 32433547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BEON: A Functional Fluorescence Reporter for Quantification and Enrichment of Adenine Base-Editing Activity.
    Wang P; Xu L; Gao Y; Han R
    Mol Ther; 2020 Jul; 28(7):1696-1705. PubMed ID: 32353322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unlocking the secrets of ABEs: the molecular mechanism behind their specificity.
    Chen X; McAndrew MJ; Lapinaite A
    Biochem Soc Trans; 2023 Aug; 51(4):1635-1646. PubMed ID: 37526140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing.
    Grünewald J; Zhou R; Lareau CA; Garcia SP; Iyer S; Miller BR; Langner LM; Hsu JY; Aryee MJ; Joung JK
    Nat Biotechnol; 2020 Jul; 38(7):861-864. PubMed ID: 32483364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed-evolution mutations enhance DNA-binding affinity and protein stability of the adenine base editor ABE8e.
    Zhu H; Wang L; Wang Y; Jiang X; Qin Q; Song M; Huang Q
    Cell Mol Life Sci; 2024 Jun; 81(1):257. PubMed ID: 38874784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity.
    Li J; Yu W; Huang S; Wu S; Li L; Zhou J; Cao Y; Huang X; Qiao Y
    Nat Commun; 2021 Apr; 12(1):2287. PubMed ID: 33863894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and minimization of cellular RNA editing by DNA adenine base editors.
    Rees HA; Wilson C; Doman JL; Liu DR
    Sci Adv; 2019 May; 5(5):eaax5717. PubMed ID: 31086823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Base editors for simultaneous introduction of C-to-T and A-to-G mutations.
    Sakata RC; Ishiguro S; Mori H; Tanaka M; Tatsuno K; Ueda H; Yamamoto S; Seki M; Masuyama N; Nishida K; Nishimasu H; Arakawa K; Kondo A; Nureki O; Tomita M; Aburatani H; Yachie N
    Nat Biotechnol; 2020 Jul; 38(7):865-869. PubMed ID: 32483365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous Expression and Purification of a CRISPR-Cas9-Based Adenine Base Editor.
    Lee SN; Jang HS; Woo JS
    Methods Mol Biol; 2023; 2606():123-133. PubMed ID: 36592312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenine base editor engineering reduces editing of bystander cytosines.
    Jeong YK; Lee S; Hwang GH; Hong SA; Park SE; Kim JS; Woo JS; Bae S
    Nat Biotechnol; 2021 Nov; 39(11):1426-1433. PubMed ID: 34211162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants.
    Tan J; Zeng D; Zhao Y; Wang Y; Liu T; Li S; Xue Y; Luo Y; Xie X; Chen L; Liu YG; Zhu Q
    Plant Biotechnol J; 2022 May; 20(5):934-943. PubMed ID: 34984801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing.
    Nguyen Tran MT; Mohd Khalid MKN; Wang Q; Walker JKR; Lidgerwood GE; Dilworth KL; Lisowski L; Pébay A; Hewitt AW
    Nat Commun; 2020 Sep; 11(1):4871. PubMed ID: 32978399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision genome engineering through adenine and cytosine base editing.
    Kim JS
    Nat Plants; 2018 Mar; 4(3):148-151. PubMed ID: 29483683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Off-Target Editing by CRISPR-Guided DNA Base Editors.
    Park S; Beal PA
    Biochemistry; 2019 Sep; 58(36):3727-3734. PubMed ID: 31433621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
    Zeng D; Zheng Z; Liu Y; Liu T; Li T; Liu J; Luo Q; Xue Y; Li S; Chai N; Yu S; Xie X; Liu YG; Zhu Q
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The "new favorite" of gene editing technology-single base editors.
    Wei Y; Zhang XH; Li DL
    Yi Chuan; 2017 Dec; 39(12):1115-1121. PubMed ID: 29258982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient RNA-guided base editing in rabbit.
    Liu Z; Chen M; Chen S; Deng J; Song Y; Lai L; Li Z
    Nat Commun; 2018 Jul; 9(1):2717. PubMed ID: 30006570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Wild-Type tRNA Adenosine Deaminase Enzyme TadA Is Capable of Sequence-Specific DNA Base Editing.
    Ranzau BL; Rallapalli KL; Evanoff M; Paesani F; Komor AC
    Chembiochem; 2023 Aug; 24(16):e202200788. PubMed ID: 36947856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.