BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32732972)

  • 21. A curve shaped description of large networks, with an application to the evaluation of network models.
    Su X; Jin X; Min Y; Mo L; Yang J
    PLoS One; 2011; 6(5):e19784. PubMed ID: 21611192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphlet-orbit Transitions (GoT): A fingerprint for temporal network comparison.
    Aparício D; Ribeiro P; Silva F
    PLoS One; 2018; 13(10):e0205497. PubMed ID: 30335791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning a Probabilistic Topology Discovering Model for Scene Categorization.
    Zhang L; Ji R; Xia Y; Zhang Y; Li X
    IEEE Trans Neural Netw Learn Syst; 2015 Aug; 26(8):1622-34. PubMed ID: 25203998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combinatorial algorithm for counting small induced graphs and orbits.
    Hočevar T; Demšar J
    PLoS One; 2017; 12(2):e0171428. PubMed ID: 28182743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphlet-based measures are suitable for biological network comparison.
    Hayes W; Sun K; Pržulj N
    Bioinformatics; 2013 Feb; 29(4):483-91. PubMed ID: 23349212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring the structure and function of temporal networks with dynamic graphlets.
    Hulovatyy Y; Chen H; Milenković T
    Bioinformatics; 2015 Jun; 31(12):i171-80. PubMed ID: 26072480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visibility graphlet approach to chaotic time series.
    Mutua S; Gu C; Yang H
    Chaos; 2016 May; 26(5):053107. PubMed ID: 27249947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GRAFENE: Graphlet-based alignment-free network approach integrates 3D structural and sequence (residue order) data to improve protein structural comparison.
    Faisal FE; Newaz K; Chaney JL; Li J; Emrich SJ; Clark PL; Milenković T
    Sci Rep; 2017 Nov; 7(1):14890. PubMed ID: 29097661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficiently counting all orbits of graphlets of any order in a graph using autogenerated equations.
    Melckenbeeck I; Audenaert P; Colle D; Pickavet M
    Bioinformatics; 2018 Apr; 34(8):1372-1380. PubMed ID: 29186327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient estimation of graphlet frequency distributions in protein-protein interaction networks.
    Przulj N; Corneil DG; Jurisica I
    Bioinformatics; 2006 Apr; 22(8):974-80. PubMed ID: 16452112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimal network alignment with graphlet degree vectors.
    Milenković T; Ng WL; Hayes W; Przulj N
    Cancer Inform; 2010 Jun; 9():121-37. PubMed ID: 20628593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphlets in Multiplex Networks.
    Dimitrova T; Petrovski K; Kocarev L
    Sci Rep; 2020 Feb; 10(1):1928. PubMed ID: 32024867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stochastic Graphlet Embedding.
    Dutta A; Sahbi H
    IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2369-2382. PubMed ID: 30582559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphlet characteristics in directed networks.
    Trpevski I; Dimitrova T; Boshkovski T; Stikov N; Kocarev L
    Sci Rep; 2016 Nov; 6():37057. PubMed ID: 27830769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep graphs-A general framework to represent and analyze heterogeneous complex systems across scales.
    Traxl D; Boers N; Kurths J
    Chaos; 2016 Jun; 26(6):065303. PubMed ID: 27368793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using Graphlet Spectrograms for Temporal Pattern Analysis of Virus-Research Collaboration Networks.
    Floros D; Liu T; Pitsianis N; Sun X
    ArXiv; 2020 Sep; ():. PubMed ID: 32908945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finding alignments of conserved graphlets in protein interaction networks.
    Hsieh MF; Sze SH
    J Comput Biol; 2014 Mar; 21(3):234-46. PubMed ID: 24506222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-scale structure and topological anomaly detection via a new network statistic: The onion decomposition.
    Hébert-Dufresne L; Grochow JA; Allard A
    Sci Rep; 2016 Aug; 6():31708. PubMed ID: 27535466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degree difference: a simple measure to characterize structural heterogeneity in complex networks.
    Farzam A; Samal A; Jost J
    Sci Rep; 2020 Dec; 10(1):21348. PubMed ID: 33288824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dense graphlet statistics of protein interaction and random networks.
    Colak R; Hormozdiari F; Moser F; Schönhuth A; Holman J; Ester M; Sahinalp SC
    Pac Symp Biocomput; 2009; ():178-89. PubMed ID: 19213135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.