These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32732981)

  • 1. Strategies to enable large-scale proteomics for reproducible research.
    Poulos RC; Hains PG; Shah R; Lucas N; Xavier D; Manda SS; Anees A; Koh JMS; Mahboob S; Wittman M; Williams SG; Sykes EK; Hecker M; Dausmann M; Wouters MA; Ashman K; Yang J; Wild PJ; deFazio A; Balleine RL; Tully B; Aebersold R; Speed TP; Liu Y; Reddel RR; Robinson PJ; Zhong Q
    Nat Commun; 2020 Jul; 11(1):3793. PubMed ID: 32732981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical applications of mass spectrometry-based proteomics in cancer: Where are we?
    Boys EL; Liu J; Robinson PJ; Reddel RR
    Proteomics; 2023 Apr; 23(7-8):e2200238. PubMed ID: 35968695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-mass spectrometry.
    Selevsek N; Chang CY; Gillet LC; Navarro P; Bernhardt OM; Reiter L; Cheng LY; Vitek O; Aebersold R
    Mol Cell Proteomics; 2015 Mar; 14(3):739-49. PubMed ID: 25561506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry.
    Collins BC; Hunter CL; Liu Y; Schilling B; Rosenberger G; Bader SL; Chan DW; Gibson BW; Gingras AC; Held JM; Hirayama-Kurogi M; Hou G; Krisp C; Larsen B; Lin L; Liu S; Molloy MP; Moritz RL; Ohtsuki S; Schlapbach R; Selevsek N; Thomas SN; Tzeng SC; Zhang H; Aebersold R
    Nat Commun; 2017 Aug; 8(1):291. PubMed ID: 28827567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry.
    Gebreyesus ST; Siyal AA; Kitata RB; Chen ES; Enkhbayar B; Angata T; Lin KI; Chen YJ; Tu HL
    Nat Commun; 2022 Jan; 13(1):37. PubMed ID: 35013269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avant-garde: an automated data-driven DIA data curation tool.
    Vaca Jacome AS; Peckner R; Shulman N; Krug K; DeRuff KC; Officer A; Christianson KE; MacLean B; MacCoss MJ; Carr SA; Jaffe JD
    Nat Methods; 2020 Dec; 17(12):1237-1244. PubMed ID: 33199889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DPHL: A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery.
    Zhu T; Zhu Y; Xuan Y; Gao H; Cai X; Piersma SR; Pham TV; Schelfhorst T; Haas RRGD; Bijnsdorp IV; Sun R; Yue L; Ruan G; Zhang Q; Hu M; Zhou Y; Van Houdt WJ; Le Large TYS; Cloos J; Wojtuszkiewicz A; Koppers-Lalic D; Böttger F; Scheepbouwer C; Brakenhoff RH; van Leenders GJLH; Ijzermans JNM; Martens JWM; Steenbergen RDM; Grieken NC; Selvarajan S; Mantoo S; Lee SS; Yeow SJY; Alkaff SMF; Xiang N; Sun Y; Yi X; Dai S; Liu W; Lu T; Wu Z; Liang X; Wang M; Shao Y; Zheng X; Xu K; Yang Q; Meng Y; Lu C; Zhu J; Zheng J; Wang B; Lou S; Dai Y; Xu C; Yu C; Ying H; Lim TK; Wu J; Gao X; Luan Z; Teng X; Wu P; Huang S; Tao Z; Iyer NG; Zhou S; Shao W; Lam H; Ma D; Ji J; Kon OL; Zheng S; Aebersold R; Jimenez CR; Guo T
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):104-119. PubMed ID: 32795611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research.
    Tyanova S; Cox J
    Methods Mol Biol; 2018; 1711():133-148. PubMed ID: 29344888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Implementation of Mass Spectrometry-Based Proteomics Workflows in Clinical Routines of Acute Myeloid Leukemia: Applicability and Perspectives.
    Hernandez-Valladares M; Bruserud Ø; Selheim F
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32957646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What is targeted proteomics? A concise revision of targeted acquisition and targeted data analysis in mass spectrometry.
    Borràs E; Sabidó E
    Proteomics; 2017 Sep; 17(17-18):. PubMed ID: 28719092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-Independent Acquisition Mass Spectrometry To Quantify Protein Levels in FFPE Tumor Biopsies for Molecular Diagnostics.
    Kim YJ; Sweet SMM; Egertson JD; Sedgewick AJ; Woo S; Liao WL; Merrihew GE; Searle BC; Vaske C; Heaton R; MacCoss MJ; Hembrough T
    J Proteome Res; 2019 Jan; 18(1):426-435. PubMed ID: 30481034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry.
    Mertins P; Tang LC; Krug K; Clark DJ; Gritsenko MA; Chen L; Clauser KR; Clauss TR; Shah P; Gillette MA; Petyuk VA; Thomas SN; Mani DR; Mundt F; Moore RJ; Hu Y; Zhao R; Schnaubelt M; Keshishian H; Monroe ME; Zhang Z; Udeshi ND; Mani D; Davies SR; Townsend RR; Chan DW; Smith RD; Zhang H; Liu T; Carr SA
    Nat Protoc; 2018 Jul; 13(7):1632-1661. PubMed ID: 29988108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics.
    Distler U; Kuharev J; Navarro P; Tenzer S
    Nat Protoc; 2016 Apr; 11(4):795-812. PubMed ID: 27010757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Untargeted, spectral library-free analysis of data-independent acquisition proteomics data generated using Orbitrap mass spectrometers.
    Tsou CC; Tsai CF; Teo GC; Chen YJ; Nesvizhskii AI
    Proteomics; 2016 Aug; 16(15-16):2257-71. PubMed ID: 27246681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid data acquisition and processing strategies with increased throughput and selectivity: pSMART analysis for global qualitative and quantitative analysis.
    Prakash A; Peterman S; Ahmad S; Sarracino D; Frewen B; Vogelsang M; Byram G; Krastins B; Vadali G; Lopez M
    J Proteome Res; 2014 Dec; 13(12):5415-30. PubMed ID: 25244318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics.
    Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L
    Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.
    Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K
    J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Sensitive and Controlled Data-Independent Acquisition Method for Proteomic Analysis of Cell Therapies.
    Lombard-Banek C; Pohl KI; Kwee EJ; Elliott JT; Schiel JE
    J Proteome Res; 2022 May; 21(5):1229-1239. PubMed ID: 35404046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics.
    Haynes SE; Majmudar JD; Martin BR
    Anal Chem; 2018 Aug; 90(15):8722-8726. PubMed ID: 29989796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.