BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32733060)

  • 1. Alpha-ketoglutarate utilization in Saccharomyces cerevisiae: transport, compartmentation and catabolism.
    Zhang J; van den Herik BM; Wahl SA
    Sci Rep; 2020 Jul; 10(1):12838. PubMed ID: 32733060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular product recycling in high succinic acid producing yeast at low pH.
    Wahl SA; Bernal Martinez C; Zhao Z; van Gulik WM; Jansen MLA
    Microb Cell Fact; 2017 May; 16(1):90. PubMed ID: 28535757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.
    Shah MV; van Mastrigt O; Heijnen JJ; van Gulik WM
    Yeast; 2016 Apr; 33(4):145-61. PubMed ID: 26683700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyridoxal and α-Ketoglutarate Independently Improve Function of Saccharomyces cerevisiae Thi5 in the Metabolic Network of Salmonella enterica.
    Paxhia MD; Downs DM
    J Bacteriol; 2022 Jan; 204(1):e0045021. PubMed ID: 34662241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. alpha-Ketoglutarate transport in rat renal brush-border and basolateral membrane vesicles.
    Edwards RM; Stack E; Trizna W
    J Pharmacol Exp Ther; 1997 Jun; 281(3):1059-64. PubMed ID: 9190836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fast sensor for in vivo quantification of cytosolic phosphate in Saccharomyces cerevisiae.
    Zhang J; Sassen T; ten Pierick A; Ras C; Heijnen JJ; Wahl SA
    Biotechnol Bioeng; 2015 May; 112(5):1033-46. PubMed ID: 25502731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification in Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate.
    Palmieri L; Agrimi G; Runswick MJ; Fearnley IM; Palmieri F; Walker JE
    J Biol Chem; 2001 Jan; 276(3):1916-22. PubMed ID: 11013234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of brain mitochondrial glutamate and alpha-ketoglutarate transport under physiologic conditions.
    Berkich DA; Xu Y; LaNoue KF; Gruetter R; Hutson SM
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):106-13. PubMed ID: 15558751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae.
    Kumar K; Venkatraman V; Bruheim P
    Microb Cell Fact; 2021 Mar; 20(1):64. PubMed ID: 33750414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane.
    Makuc J; Paiva S; Schauen M; Krämer R; André B; Casal M; Leão C; Boles E
    Yeast; 2001 Sep; 18(12):1131-43. PubMed ID: 11536335
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Zhang M; Yu XW; Xu Y; Jouhten P; Swapna GVT; Glaser RW; Hunt JF; Montelione GT; Maaheimo H; Szyperski T
    FEBS J; 2017 Sep; 284(18):3100-3113. PubMed ID: 28731268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain.
    Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial transporters involved in oleic acid utilization and glutamate metabolism in yeast.
    Trotter PJ; Adamson AL; Ghrist AC; Rowe L; Scott LR; Sherman MP; Stites NC; Sun Y; Tawiah-Boateng MA; Tibbetts AS; Wadington MC; West AC
    Arch Biochem Biophys; 2005 Oct; 442(1):21-32. PubMed ID: 16140254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae.
    Abbott DA; Suir E; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2008 Sep; 74(18):5759-68. PubMed ID: 18676708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae.
    Papini M; Nookaew I; Uhlén M; Nielsen J
    Microb Cell Fact; 2012 Oct; 11():136. PubMed ID: 23043429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stopped-flow kinetic analysis of Escherichia coli taurine/alpha-ketoglutarate dioxygenase: interactions with alpha-ketoglutarate, taurine, and oxygen.
    Ryle MJ; Padmakumar R; Hausinger RP
    Biochemistry; 1999 Nov; 38(46):15278-86. PubMed ID: 10563813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission.
    Ugur B; Bao H; Stawarski M; Duraine LR; Zuo Z; Lin YQ; Neely GG; Macleod GT; Chapman ER; Bellen HJ
    Cell Rep; 2017 Dec; 21(13):3794-3806. PubMed ID: 29281828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using 13C-labeled substrates.
    dos Santos MM; Gombert AK; Christensen B; Olsson L; Nielsen J
    Eukaryot Cell; 2003 Jun; 2(3):599-608. PubMed ID: 12796305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.