BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32733438)

  • 21. Furanodienone induces cell cycle arrest and apoptosis by suppressing EGFR/HER2 signaling in HER2-overexpressing human breast cancer cells.
    Li YW; Zhu GY; Shen XL; Chu JH; Yu ZL; Fong WF
    Cancer Chemother Pharmacol; 2011 Nov; 68(5):1315-23. PubMed ID: 21461888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel expression of a functional trimeric fragment of human SP-A with efficacy in neutralisation of RSV.
    Watson A; Kronqvist N; Spalluto CM; Griffiths M; Staples KJ; Wilkinson T; Holmskov U; Sorensen GL; Rising A; Johansson J; Madsen J; Clark H
    Immunobiology; 2017 Feb; 222(2):111-118. PubMed ID: 27793398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of novel trimeric fragments of human SP-A and SP-D after recombinant soluble expression in E. coli.
    Watson A; Sørensen GL; Holmskov U; Whitwell HJ; Madsen J; Clark H
    Immunobiology; 2020 Jul; 225(4):151953. PubMed ID: 32747028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of human epidermal growth factor receptor 2, c-jun NH2-terminal kinase, phosphoinositide 3-kinase, and p70 S6 kinase pathways in regulation of cyclin G2 expression in human breast cancer cells.
    Le XF; Arachchige-Don AS; Mao W; Horne MC; Bast RC
    Mol Cancer Ther; 2007 Nov; 6(11):2843-57. PubMed ID: 18025271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of multikinase inhibitors on caspase-independent cell death and DNA damage in HER2-overexpressing breast cancer cells.
    Seoane S; Montero JC; Ocaña A; Pandiella A
    J Natl Cancer Inst; 2010 Sep; 102(18):1432-46. PubMed ID: 20811002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A recombinant fragment of human SP-D reduces allergic responses in mice sensitized to house dust mite allergens.
    Strong P; Townsend P; Mackay R; Reid KB; Clark HW
    Clin Exp Immunol; 2003 Nov; 134(2):181-7. PubMed ID: 14616775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB.
    Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R
    Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CK0403, a 9‑aminoacridine, is a potent anti‑cancer agent in human breast cancer cells.
    Sun YW; Chen KY; Kwon CH; Chen KM
    Mol Med Rep; 2016 Jan; 13(1):933-8. PubMed ID: 26648164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein-Protein Interaction between Surfactant Protein D and DC-SIGN
    Dodagatta-Marri E; Mitchell DA; Pandit H; Sonawani A; Murugaiah V; Idicula-Thomas S; Nal B; Al-Mozaini MM; Kaur A; Madan T; Kishore U
    Front Immunol; 2017; 8():834. PubMed ID: 28824609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modular anti-EGFR and anti-Her2 targeting of SK-BR-3 and BT474 breast cancer cell lines in the presence of ErbB receptor-specific growth factors.
    Diermeier-Daucher S; Breindl S; Buchholz S; Ortmann O; Brockhoff G
    Cytometry A; 2011 Sep; 79(9):684-93. PubMed ID: 21786419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor.
    Tseng PH; Wang YC; Weng SC; Weng JR; Chen CS; Brueggemeier RW; Shapiro CL; Chen CY; Dunn SE; Pollak M; Chen CS
    Mol Pharmacol; 2006 Nov; 70(5):1534-41. PubMed ID: 16887935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Palmitate-induced ER stress increases trastuzumab sensitivity in HER2/neu-positive breast cancer cells.
    Baumann J; Wong J; Sun Y; Conklin DS
    BMC Cancer; 2016 Jul; 16():551. PubMed ID: 27464732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surfactant protein A down-regulates epidermal growth factor receptor by mechanisms different from those of surfactant protein D.
    Hasegawa Y; Takahashi M; Ariki S; Saito A; Uehara Y; Takamiya R; Kuronuma K; Chiba H; Sakuma Y; Takahashi H; Kuroki Y
    J Biol Chem; 2017 Nov; 292(45):18565-18576. PubMed ID: 28972165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.
    Li JP; Yang YX; Liu QL; Pan ST; He ZX; Zhang X; Yang T; Chen XW; Wang D; Qiu JX; Zhou SF
    Drug Des Devel Ther; 2015; 9():1627-52. PubMed ID: 25834401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surfactant protein D (SP-D) alters cellular uptake of particles and nanoparticles.
    Kendall M; Ding P; Mackay RM; Deb R; McKenzie Z; Kendall K; Madsen J; Clark H
    Nanotoxicology; 2013 Aug; 7(5):963-73. PubMed ID: 22551051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Α-eleostearic acid inhibits growth and induces apoptosis in breast cancer cells via HER2/HER3 signaling.
    Zhuo RJ; Wang F; Zhang XH; Zhang JJ; Xu J; Dong W; Zou ZQ
    Mol Med Rep; 2014 Mar; 9(3):993-8. PubMed ID: 24425042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recombinant surfactant protein-D selectively increases apoptosis in eosinophils of allergic asthmatics and enhances uptake of apoptotic eosinophils by macrophages.
    Mahajan L; Madan T; Kamal N; Singh VK; Sim RB; Telang SD; Ramchand CN; Waters P; Kishore U; Sarma PU
    Int Immunol; 2008 Aug; 20(8):993-1007. PubMed ID: 18628238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioengineered tumor microenvironments with naked mole rats high-molecular-weight hyaluronan induces apoptosis in breast cancer cells.
    Zhao Y; Qiao S; Hou X; Tian H; Deng S; Ye K; Nie Y; Chen X; Yan H; Tian W
    Oncogene; 2019 May; 38(22):4297-4309. PubMed ID: 30700830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Erythropoietin receptor expression and its relationship with trastuzumab response and resistance in HER2-positive breast cancer cells.
    Zhang C; Duan X; Xu L; Ye J; Zhao J; Liu Y
    Breast Cancer Res Treat; 2012 Dec; 136(3):739-48. PubMed ID: 23117856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting of the HER2/HER3 signaling axis overcomes ligand-mediated resistance to trastuzumab in HER2-positive breast cancer.
    Watanabe S; Yonesaka K; Tanizaki J; Nonagase Y; Takegawa N; Haratani K; Kawakami H; Hayashi H; Takeda M; Tsurutani J; Nakagawa K
    Cancer Med; 2019 Mar; 8(3):1258-1268. PubMed ID: 30701699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.