These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32733533)

  • 21. Complex Chromosomal Rearrangement Causes Male Azoospermia: A Case Report and Literature Review.
    Liang Y; Xie Y; Kong S; Pan Q; Qiu W; Wang D; Li M; Lin S; Liu Z; Sun X
    Front Genet; 2022; 13():792539. PubMed ID: 35281846
    [No Abstract]   [Full Text] [Related]  

  • 22. Analysis of chromosomal structural variations in patients with recurrent spontaneous abortion using optical genome mapping.
    Rao H; Zhang H; Zou Y; Ma P; Huang T; Yuan H; Zhou J; Lu W; Li Q; Huang S; Liu Y; Yang B
    Front Genet; 2023; 14():1248755. PubMed ID: 37732322
    [No Abstract]   [Full Text] [Related]  

  • 23. Tandem and inverted duplications in haemophilia A: Breakpoint characterisation provides insight into possible rearrangement mechanisms.
    Li Y; Ding B; Mao Y; Zhang H; Wang X; Ding Q
    Haemophilia; 2023 Jul; 29(4):1121-1134. PubMed ID: 37192522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants.
    Bahrambeigi V; Song X; Sperle K; Beck CR; Hijazi H; Grochowski CM; Gu S; Seeman P; Woodward KJ; Carvalho CMB; Hobson GM; Lupski JR
    Genome Med; 2019 Dec; 11(1):80. PubMed ID: 31818324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inv dup del(10q): identification by fluorescence in situ hybridization and array comparative genomic hybridization in a fetus with two concurrent chromosomal rearrangements.
    Chen CP; Chen M; Su YN; Huang JP; Ma GC; Chang SP; Chern SR; Chen YT; Su JW; Lee CC; Town DD; Wang W
    Taiwan J Obstet Gynecol; 2012 Jun; 51(2):245-52. PubMed ID: 22795102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The involvement of U-type dicentric chromosomes in the formation of terminal deletions with or without adjacent inverted duplications.
    Kato T; Inagaki H; Miyai S; Suzuki F; Naru Y; Shinkai Y; Kato A; Kanyama K; Mizuno S; Muramatsu Y; Yamamoto T; Shinya M; Tazaki Y; Hiwatashi S; Ikeda T; Ozaki M; Kurahashi H
    Hum Genet; 2020 Nov; 139(11):1417-1427. PubMed ID: 32488466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms for Complex Chromosomal Insertions.
    Gu S; Szafranski P; Akdemir ZC; Yuan B; Cooper ML; Magriñá MA; Bacino CA; Lalani SR; Breman AM; Smith JL; Patel A; Song RH; Bi W; Cheung SW; Carvalho CM; Stankiewicz P; Lupski JR
    PLoS Genet; 2016 Nov; 12(11):e1006446. PubMed ID: 27880765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rare 15q21.1q22.31 Duplication Due to a Familial Chromosomal Insertion and Diagnostic Investigation in a Carrier of Balanced Chromosomal Rearrangement and Intellectual Disability.
    Nascimento CG; Prota JRM; Sgardioli IC; Spineli-Silva S; Campos NLV; Gil-da-Silva-Lopes VL; Vieira TP
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Breakpoint mapping by next generation sequencing reveals causative gene disruption in patients carrying apparently balanced chromosome rearrangements with intellectual deficiency and/or congenital malformations.
    Schluth-Bolard C; Labalme A; Cordier MP; Till M; Nadeau G; Tevissen H; Lesca G; Boutry-Kryza N; Rossignol S; Rocas D; Dubruc E; Edery P; Sanlaville D
    J Med Genet; 2013 Mar; 50(3):144-50. PubMed ID: 23315544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromosomal microarray analysis of Bulgarian patients with epilepsy and intellectual disability.
    Peycheva V; Kamenarova K; Ivanova N; Stamatov D; Avdjieva-Tzavella D; Alexandrova I; Zhelyazkova S; Pacheva I; Dimova P; Ivanov I; Litvinenko I; Bozhinova V; Tournev I; Simeonov E; Mitev V; Jordanova A; Kaneva R
    Gene; 2018 Aug; 667():45-55. PubMed ID: 29753047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability.
    Lindstrand A; Eisfeldt J; Pettersson M; Carvalho CMB; Kvarnung M; Grigelioniene G; Anderlid BM; Bjerin O; Gustavsson P; Hammarsjö A; Georgii-Hemming P; Iwarsson E; Johansson-Soller M; Lagerstedt-Robinson K; Lieden A; Magnusson M; Martin M; Malmgren H; Nordenskjöld M; Norling A; Sahlin E; Stranneheim H; Tham E; Wincent J; Ygberg S; Wedell A; Wirta V; Nordgren A; Lundin J; Nilsson D
    Genome Med; 2019 Nov; 11(1):68. PubMed ID: 31694722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complex genomic rearrangements in the dystrophin gene due to replication-based mechanisms.
    Baskin B; Stavropoulos DJ; Rebeiro PA; Orr J; Li M; Steele L; Marshall CR; Lemire EG; Boycott KM; Gibson W; Ray PN
    Mol Genet Genomic Med; 2014 Nov; 2(6):539-47. PubMed ID: 25614876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of chromosomal microarrays in the evaluation of intellectual disability/global developmental delay patients - A study from a tertiary care genetic centre in India.
    Sharma P; Gupta N; Chowdhury MR; Sapra S; Ghosh M; Gulati S; Kabra M
    Gene; 2016 Sep; 590(1):109-19. PubMed ID: 27291820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of Chromosomal Structural Abnormalities in Patients With Undiagnosed Neurodevelopmental Disorders.
    Cao Y; Luk HM; Zhang Y; Chau MHK; Xue S; Cheng SSW; Li AM; Chong JSC; Leung TY; Dong Z; Choy KW; Lo IFM
    Front Genet; 2022; 13():803088. PubMed ID: 35495136
    [No Abstract]   [Full Text] [Related]  

  • 35. Combining cytogenetic and genomic technologies for deciphering challenging complex chromosomal rearrangements.
    Michaelson-Cohen R; Murik O; Zeligson S; Lobel O; Weiss O; Picard E; Mann T; Mor-Shaked H; Zeevi DA; Segel R
    Mol Genet Genomics; 2022 Jul; 297(4):925-933. PubMed ID: 35488049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Breakpoint junction analysis for complex genomic rearrangements with the caldera volcano-like pattern.
    Yanagishita T; Imaizumi T; Yamamoto-Shimojima K; Yano T; Okamoto N; Nagata S; Yamamoto T
    Hum Mutat; 2020 Dec; 41(12):2119-2127. PubMed ID: 32906213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutation spectrum of Drosophila CNVs revealed by breakpoint sequencing.
    Cardoso-Moreira M; Arguello JR; Clark AG
    Genome Biol; 2012 Dec; 13(12):R119. PubMed ID: 23259534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome.
    Carvalho CMB; Coban-Akdemir Z; Hijazi H; Yuan B; Pendleton M; Harrington E; Beaulaurier J; Juul S; Turner DJ; Kanchi RS; Jhangiani SN; Muzny DM; Gibbs RA; ; Stankiewicz P; Belmont JW; Shaw CA; Cheung SW; Hanchard NA; Sutton VR; Bader PI; Lupski JR
    Genome Med; 2019 Apr; 11(1):25. PubMed ID: 31014393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic prediction and validation of breakpoints associated with copy-number variants in the human genome.
    Korbel JO; Urban AE; Grubert F; Du J; Royce TE; Starr P; Zhong G; Emanuel BS; Weissman SM; Snyder M; Gerstein MB
    Proc Natl Acad Sci U S A; 2007 Jun; 104(24):10110-5. PubMed ID: 17551006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural rearrangements as a recurrent pathogenic mechanism for SETBP1 haploinsufficiency.
    Alesi V; Genovese S; Roberti MC; Sallicandro E; Di Tommaso S; Loddo S; Orlando V; Pompili D; Calacci C; Mei V; Pisaneschi E; Faggiano MV; Morgia A; Mammì C; Astrea G; Battini R; Priolo M; Dentici ML; Milone R; Novelli A
    Hum Genomics; 2024 Mar; 18(1):29. PubMed ID: 38520002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.