These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32733778)

  • 1. A new photodetector structure based on graphene nanomeshes: an ab initio study.
    Sakkaki B; Rasooli Saghai H; Darvish G; Khatir M
    Beilstein J Nanotechnol; 2020; 11():1036-1044. PubMed ID: 32733778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pore-size disorder on the electronic properties of semiconducting graphene nanomeshes.
    Gamal S; Fadlallah MM; Salah LM; Maarouf AA
    Nanotechnology; 2020 Nov; 31(48):485710. PubMed ID: 32936788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of edge imperfections on the transport behavior of graphene nanomeshes.
    Ji X; Zhang J; Wang Y; Qian H; Yu Z
    Nanoscale; 2013 Mar; 5(6):2527-31. PubMed ID: 23426177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crown Graphene Nanomeshes: Highly Stable Chelation-Doped Semiconducting Materials.
    Maarouf AA; Nistor RA; Afzali-Ardakani A; Kuroda MA; Newns DM; Martyna GJ
    J Chem Theory Comput; 2013 May; 9(5):2398-403. PubMed ID: 26583730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Engineering Effect in Electronic and Optical Properties of Graphene Nanomeshes.
    Chernozatonskii LA; Artyukh AA; Kvashnin AG; Kvashnin DG
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55189-55194. PubMed ID: 33225682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrical properties of integrated photodetectors based on bilayer graphene quantum dots with asymmetric metal contacts: a NEGF-DFT study.
    Ghandchi M; Darvish G; Moravvej-Farshi MK
    Phys Chem Chem Phys; 2022 Jan; 24(3):1590-1597. PubMed ID: 34942635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation and comparison of graphene nanoribbon and carbon nanotube based SARS-CoV-2 detection sensors: An ab initio study.
    Yamacli S; Avci M
    Physica B Condens Matter; 2023 Jan; 648():414438. PubMed ID: 36281340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene Nanoribbon Field Effect Transistor Simulations for the Detection of Sugar Molecules: Semi-Empirical Modeling.
    Wasfi A; Al Hamarna A; Al Shehhi OMH; Al Ameri HFM; Awwad F
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed growth of graphene nanomesh in purified argon via chemical vapor deposition.
    Sun H; Fu C; Shen X; Yang W; Guo P; Lu Y; Luo Y; Yu B; Wang X; Wang C; Xu J; Liu J; Song F; Wang G; Wan J
    Nanotechnology; 2017 Jun; 28(24):245604. PubMed ID: 28540865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding π-bond model.
    Chin SK; Lam KT; Seah D; Liang G
    Nanoscale Res Lett; 2012 Feb; 7(1):114. PubMed ID: 22325480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene and graphene nanomesh supported nickel clusters: electronic, magnetic, and hydrogen storage properties.
    Fadlallah MM; Abdelrahman AG; Schwingenschlögl U; Maarouf AA
    Nanotechnology; 2019 Feb; 30(8):085709. PubMed ID: 30524043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography.
    Liang X; Jung YS; Wu S; Ismach A; Olynick DL; Cabrini S; Bokor J
    Nano Lett; 2010 Jul; 10(7):2454-60. PubMed ID: 20540552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons.
    Javan M; Jorjani R; Soltani AR
    J Mol Model; 2020 Mar; 26(4):64. PubMed ID: 32125548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of diverse graphene nanomeshes based on simultaneous regulation of pore size and surface structure.
    Zhang J; Song H; Zeng D; Wang H; Qin Z; Xu K; Pang A; Xie C
    Sci Rep; 2016 Aug; 6():32310. PubMed ID: 27561350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilayered graphene/h-BN with folded holes as new nanoelectronic materials: modeling of structures and electronic properties.
    Chernozatonskii LA; Demin VA; Bellucci S
    Sci Rep; 2016 Nov; 6():38029. PubMed ID: 27897237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bright Electroluminescence from Single Graphene Nanoribbon Junctions.
    Chong MC; Afshar-Imani N; Scheurer F; Cardoso C; Ferretti A; Prezzi D; Schull G
    Nano Lett; 2018 Jan; 18(1):175-181. PubMed ID: 29215893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-induced switching effect in graphene nanoribbon edge-defect junction.
    Yin G; Liang YY; Jiang F; Chen H; Wang P; Note R; Mizuseki H; Kawazoe Y
    J Chem Phys; 2009 Dec; 131(23):234706. PubMed ID: 20025341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Parametric Study of Armchair Graphene Nanoribbon Field Effect Transistor by Non-Equilibrium Green's Function Method.
    Hur JH
    J Nanosci Nanotechnol; 2020 Aug; 20(8):4832-4838. PubMed ID: 32126662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.