These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32733778)

  • 21. Tunable topological electronic states in the honeycomb-kagome lattices of nitrogen/oxygen-doped graphene nanomeshes.
    Lu Y; Fan X; Ma X; Liu J; Li Y; Zhao M
    Nanoscale Adv; 2022 May; 4(9):2201-2207. PubMed ID: 36133449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.
    Wakai T; Sakamoto S; Tomiya M
    J Phys Condens Matter; 2018 Jul; 30(26):265302. PubMed ID: 29770774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons.
    Correa JD; Orellana PA; Pacheco M
    Nanomaterials (Basel); 2017 Mar; 7(3):. PubMed ID: 28336904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unravelling the interplay of geometrical, magnetic and electronic properties of metal-doped graphene nanomeshes.
    Fadlallah MM; Maarouf AA; Schwingenschlögl U; Eckern U
    J Phys Condens Matter; 2017 Feb; 29(5):055301. PubMed ID: 27911883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solution-processable graphene nanomeshes with controlled pore structures.
    Wang X; Jiao L; Sheng K; Li C; Dai L; Shi G
    Sci Rep; 2013; 3():1996. PubMed ID: 23770582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogenated cove-edge aluminum nitride nanoribbons for ultrascaled resonant tunneling diode applications: a computational DFT study.
    Kharwar S; Singh S; Kaushik BK
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36857765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Fabrication of Large-Area, Uniform Graphene Nanomeshes for High-Speed, Room-Temperature Direct Terahertz Detection.
    Yuan W; Li M; Wen Z; Sun Y; Ruan D; Zhang Z; Chen G; Gao Y
    Nanoscale Res Lett; 2018 Jul; 13(1):190. PubMed ID: 29971642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.
    Cho Y; Cho WJ; Youn IS; Lee G; Singh NJ; Kim KS
    Acc Chem Res; 2014 Nov; 47(11):3321-30. PubMed ID: 25338296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photothermal Sensing of Nano-Devices Made of Graphene Materials.
    Lu X; Yang L; Yang Z
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Charge-carrier transmission across twins in graphene.
    Arca F; Mendez JP; Ortiz M; Ariza MP
    J Phys Condens Matter; 2020 Jul; 32(42):. PubMed ID: 32599572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic Control of High-Range Photoresponsivity in a Graphene Nanoribbon Photodetector.
    Yu J; Zhong J; Kuang X; Zeng C; Cao L; Liu Y; Liu Z
    Nanoscale Res Lett; 2020 Jun; 15(1):124. PubMed ID: 32494902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. P3HT-graphene bilayer electrode for Schottky junction photodetectors.
    Aydın H; Kalkan SB; Varlikli C; Çelebi C
    Nanotechnology; 2018 Apr; 29(14):145502. PubMed ID: 29447121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons.
    Ajeel FN; Ahmed AB
    J Mol Model; 2023 Apr; 29(5):145. PubMed ID: 37067639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms.
    Zhang YH; Zhou KG; Xie KF; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2010 Feb; 21(6):065201. PubMed ID: 20057033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene nanomesh photodetector with effective charge tunnelling from quantum dots.
    Liu X; Liu N; Liu M; Tao Z; Kuang W; Ji X; Chen J; Lei W; Dai Q; Li C; Li X; Nathan A
    Nanoscale; 2015 Mar; 7(9):4242-9. PubMed ID: 25673220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic and spin transport properties of graphene nanoribbon mediated by metal adatoms: a study by the QUAMBO-NEGF approach.
    Zhang GP; Liu X; Wang CZ; Yao YX; Zhang J; Ho KM
    J Phys Condens Matter; 2013 Mar; 25(10):105302. PubMed ID: 23399804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structurally Controlled Large-Area 10 nm Pitch Graphene Nanomesh by Focused Helium Ion Beam Milling.
    Schmidt ME; Iwasaki T; Muruganathan M; Haque M; Van Ngoc H; Ogawa S; Mizuta H
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10362-10368. PubMed ID: 29485851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conductance Tunable Suspended Graphene Nanomesh by Helium Ion Beam Milling.
    Liu F; Wang Z; Nakanao S; Ogawa S; Morita Y; Schmidt M; Haque M; Muruganathan M; Mizuta H
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32272618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic Effects of Plasmonics and Electron Trapping in Graphene Short-Wave Infrared Photodetectors with Ultrahigh Responsivity.
    Chen Z; Li X; Wang J; Tao L; Long M; Liang SJ; Ang LK; Shu C; Tsang HK; Xu JB
    ACS Nano; 2017 Jan; 11(1):430-437. PubMed ID: 28005326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.