These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32733903)

  • 21. A fuzzy-enhanced deep learning approach for early detection of Covid-19 pneumonia from portable chest X-ray images.
    Ieracitano C; Mammone N; Versaci M; Varone G; Ali AR; Armentano A; Calabrese G; Ferrarelli A; Turano L; Tebala C; Hussain Z; Sheikh Z; Sheikh A; Sceni G; Hussain A; Morabito FC
    Neurocomputing (Amst); 2022 Apr; 481():202-215. PubMed ID: 35079203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel Method for Border Irregularity Assessment in Dermoscopic Color Images.
    Jaworek-Korjakowska J
    Comput Math Methods Med; 2015; 2015():496202. PubMed ID: 26604980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multimodal convolutional neuro-fuzzy network for emotion understanding of movie clips.
    Nguyen TL; Kavuri S; Lee M
    Neural Netw; 2019 Oct; 118():208-219. PubMed ID: 31299625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multilayer perceptron, fuzzy sets, and classification.
    Pal SK; Mitra S
    IEEE Trans Neural Netw; 1992; 3(5):683-97. PubMed ID: 18276468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uncertainty of data, fuzzy membership functions, and multilayer perceptrons.
    Duch W
    IEEE Trans Neural Netw; 2005 Jan; 16(1):10-23. PubMed ID: 15732386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GGA-MLP: A Greedy Genetic Algorithm to Optimize Weights and Biases in Multilayer Perceptron.
    Bansal P; Lamba R; Jain V; Jain T; Shokeen S; Kumar S; Singh PK; Khan B
    Contrast Media Mol Imaging; 2022; 2022():4036035. PubMed ID: 35280713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Knowledge-based fuzzy MLP for classification and rule generation.
    Mitra S; De RK; Pal SK
    IEEE Trans Neural Netw; 1997; 8(6):1338-50. PubMed ID: 18255736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance.
    Yuan Y; Chao M; Lo YC
    IEEE Trans Med Imaging; 2017 Sep; 36(9):1876-1886. PubMed ID: 28436853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new method describing border irregularity of pigmented lesions.
    Zhou Y; Smith M; Smith L; Warr R
    Skin Res Technol; 2010 Feb; 16(1):66-76. PubMed ID: 20384885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An improved fuzzy-differential evolution approach applied to classification of tumors in liver CT scan images.
    AmirHosseini B; Hosseini R
    Med Biol Eng Comput; 2019 Oct; 57(10):2277-2287. PubMed ID: 31418157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fuzzy neural network for knowledge learning.
    Fu HC; Shann JJ
    Int J Neural Syst; 1994 Mar; 5(1):13-22. PubMed ID: 7921381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Review of medical image recognition technologies to detect melanomas using neural networks.
    Efimenko M; Ignatev A; Koshechkin K
    BMC Bioinformatics; 2020 Sep; 21(Suppl 11):270. PubMed ID: 32921304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of interval type-2 fuzzy logic and type-1 fuzzy logic-based approaches to social networks for spam detection with combined feature capabilities.
    Atacak İ; Çıtlak O; Doğru İA
    PeerJ Comput Sci; 2023; 9():e1316. PubMed ID: 37346510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering.
    Nawaz M; Mehmood Z; Nazir T; Naqvi RA; Rehman A; Iqbal M; Saba T
    Microsc Res Tech; 2022 Jan; 85(1):339-351. PubMed ID: 34448519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms.
    Alsaade FW; Aldhyani THH; Al-Adhaileh MH
    Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of density based and fuzzy c-means clustering methods on lesion border extraction in dermoscopy images.
    Kockara S; Mete M; Chen B; Aydin K
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S26. PubMed ID: 20946610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using an adaptive network-based fuzzy inference system for prediction of successful aging: a comparison with common machine learning algorithms.
    Yazdani A; Shanbehzadeh M; Kazemi-Arpanahi H
    BMC Med Inform Decis Mak; 2023 Oct; 23(1):229. PubMed ID: 37858200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lesion Border Detection of Skin Cancer Images Using Deep Fully Convolutional Neural Network with Customized Weights.
    Kaur R; Hosseini HG; Sinha R
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3035-3038. PubMed ID: 34891883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fusing fine-tuned deep features for skin lesion classification.
    Mahbod A; Schaefer G; Ellinger I; Ecker R; Pitiot A; Wang C
    Comput Med Imaging Graph; 2019 Jan; 71():19-29. PubMed ID: 30458354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.