These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Accuracy of an Artificial Intelligence System for Cancer Clinical Trial Eligibility Screening: Retrospective Pilot Study. Haddad T; Helgeson JM; Pomerleau KE; Preininger AM; Roebuck MC; Dankwa-Mullan I; Jackson GP; Goetz MP JMIR Med Inform; 2021 Mar; 9(3):e27767. PubMed ID: 33769304 [TBL] [Abstract][Full Text] [Related]
63. Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review. Yin J; Ngiam KY; Teo HH J Med Internet Res; 2021 Apr; 23(4):e25759. PubMed ID: 33885365 [TBL] [Abstract][Full Text] [Related]
64. CriteriaMapper: establishing the automatic identification of clinical trial cohorts from electronic health records by matching normalized eligibility criteria and patient clinical characteristics. Lee K; Mai Y; Liu Z; Raja K; Jun T; Ma M; Wang T; Ai L; Calay E; Oh W; Schadt E; Wang X Sci Rep; 2024 Oct; 14(1):25387. PubMed ID: 39455879 [TBL] [Abstract][Full Text] [Related]
65. Artificial intelligence for optimizing recruitment and retention in clinical trials: a scoping review. Lu X; Yang C; Liang L; Hu G; Zhong Z; Jiang Z J Am Med Inform Assoc; 2024 Nov; 31(11):2749-2759. PubMed ID: 39259922 [TBL] [Abstract][Full Text] [Related]
66. Use of Natural Language Processing to Infer Sites of Metastatic Disease From Radiology Reports at Scale. Tay SB; Low GH; Wong GJE; Tey HJ; Leong FL; Li C; Chua MLK; Tan DSW; Thng CH; Tan IBH; Tan RSYC JCO Clin Cancer Inform; 2024 May; 8():e2300122. PubMed ID: 38788166 [TBL] [Abstract][Full Text] [Related]
67. Artificial intelligence tools for optimising recruitment and retention in clinical trials: a scoping review protocol. Lu X; Chen M; Lu Z; Shi X; Liang L BMJ Open; 2024 Mar; 14(3):e080032. PubMed ID: 38508642 [TBL] [Abstract][Full Text] [Related]
68. Evaluation of an artificial intelligence-based clinical trial matching system in Chinese patients with hepatocellular carcinoma: a retrospective study. Wang K; Cui H; Zhu Y; Hu X; Hong C; Guo Y; An L; Zhang Q; Liu L BMC Cancer; 2024 Feb; 24(1):246. PubMed ID: 38388861 [TBL] [Abstract][Full Text] [Related]
69. AI-Driven Models for Diagnosing and Predicting Outcomes in Lung Cancer: A Systematic Review and Meta-Analysis. Kanan M; Alharbi H; Alotaibi N; Almasuood L; Aljoaid S; Alharbi T; Albraik L; Alothman W; Aljohani H; Alzahrani A; Alqahtani S; Kalantan R; Althomali R; Alameen M; Mufti A Cancers (Basel); 2024 Feb; 16(3):. PubMed ID: 38339425 [TBL] [Abstract][Full Text] [Related]
71. Telemedicine and Cancer Clinical Research: Opportunities for Transformation. von Itzstein MS; Gwin ME; Gupta A; Gerber DE Cancer J; 2024 Jan-Feb 01; 30(1):22-26. PubMed ID: 38265922 [TBL] [Abstract][Full Text] [Related]
72. Large Language Models for Healthcare Data Augmentation: An Example on Patient-Trial Matching. Yuan J; Tang R; Jiang X; Hu X AMIA Annu Symp Proc; 2023; 2023():1324-1333. PubMed ID: 38222339 [TBL] [Abstract][Full Text] [Related]
73. An artificial intelligence-assisted diagnostic system for the prediction of benignity and malignancy of pulmonary nodules and its practical value for patients with different clinical characteristics. Zhang L; Shao Y; Chen G; Tian S; Zhang Q; Wu J; Bai C; Yang D Front Med (Lausanne); 2023; 10():1286433. PubMed ID: 38196835 [TBL] [Abstract][Full Text] [Related]
74. The Utility of Artificial Intelligence in the Diagnosis and Management of Pancreatic Cancer. Kumar V; Gaddam M; Moustafa A; Iqbal R; Gala D; Shah M; Gayam VR; Bandaru P; Reddy M; Gadaputi V Cureus; 2023 Nov; 15(11):e49560. PubMed ID: 38156176 [TBL] [Abstract][Full Text] [Related]
75. Harnessing artificial intelligence to improve clinical trial design. Zhang B; Zhang L; Chen Q; Jin Z; Liu S; Zhang S Commun Med (Lond); 2023 Dec; 3(1):191. PubMed ID: 38129570 [TBL] [Abstract][Full Text] [Related]
76. The role of artificial intelligence in hastening time to recruitment in clinical trials. Ismail A; Al-Zoubi T; El Naqa I; Saeed H BJR Open; 2023; 5(1):20220023. PubMed ID: 37953865 [TBL] [Abstract][Full Text] [Related]
77. Innovative Technologies in CNS Trials: Promises and Pitfalls for Recruitment, Retention, and Representativeness. Lutz J; Pratap A; Lenze EJ; Bestha D; Lipschitz JM; Karantzoulis S; Vaidyanathan U; Robin J; Horan W; Brannan S; Mittoux A; Davis MC; Lakhan SE; Keefe R Innov Clin Neurosci; 2023; 20(7-9):40-46. PubMed ID: 37817816 [TBL] [Abstract][Full Text] [Related]
78. Automated Matching of Patients to Clinical Trials: A Patient-Centric Natural Language Processing Approach for Pediatric Leukemia. Kaskovich S; Wyatt KD; Oliwa T; Graglia L; Furner B; Lee J; Mayampurath A; Volchenboum SL JCO Clin Cancer Inform; 2023 Jul; 7():e2300009. PubMed ID: 37428994 [TBL] [Abstract][Full Text] [Related]
79. Machine Learning in Clinical Trials: A Primer with Applications to Neurology. Miller MI; Shih LC; Kolachalama VB Neurotherapeutics; 2023 Jul; 20(4):1066-1080. PubMed ID: 37249836 [TBL] [Abstract][Full Text] [Related]
80. Use of artificial intelligence for cancer clinical trial enrollment: a systematic review and meta-analysis. Chow R; Midroni J; Kaur J; Boldt G; Liu G; Eng L; Liu FF; Haibe-Kains B; Lock M; Raman S J Natl Cancer Inst; 2023 Apr; 115(4):365-374. PubMed ID: 36688707 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]