These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32734282)

  • 1. Foot Rotation Gait Modifications Affect Hip and Ankle, But Not Knee, Stance Phase Joint Reaction Forces During Running.
    Bennett HJ; Valenzuela KA; Lynn SK; Weinhandl JT
    J Biomech Eng; 2021 Feb; 143(2):. PubMed ID: 32734282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination of two-joint rectus femoris and hamstrings during the swing phase of human walking and running.
    Prilutsky BI; Gregor RJ; Ryan MM
    Exp Brain Res; 1998 Jun; 120(4):479-86. PubMed ID: 9655233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical analysis of gait waveform data: exploring differences between shod and barefoot running in habitually shod runners.
    Tam N; Prins D; Divekar NV; Lamberts RP
    Gait Posture; 2017 Oct; 58():274-279. PubMed ID: 28837918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running.
    Eslami M; Begon M; Hinse S; Sadeghi H; Popov P; Allard P
    J Sci Med Sport; 2009 Nov; 12(6):679-84. PubMed ID: 18768360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-joint coordination patterns differ between younger and older runners.
    Harrison K; Kwon YU; Sima A; Thakkar B; Crosswell G; Morgan J; Blaise Williams DS
    Hum Mov Sci; 2019 Apr; 64():164-170. PubMed ID: 30738343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue matters: An intense 10 km run alters frontal and transverse plane joint kinematics in competitive and recreational adult runners.
    Willwacher S; Sanno M; Brüggemann GP
    Gait Posture; 2020 Feb; 76():277-283. PubMed ID: 31884254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hip external rotation stiffness and midfoot passive mechanical resistance are associated with lower limb movement in the frontal and transverse planes during gait.
    Cardoso TB; Ocarino JM; Fajardo CC; Paes BDC; Souza TR; Fonseca ST; Resende RA
    Gait Posture; 2020 Feb; 76():305-310. PubMed ID: 31887703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peak Muscle and Joint Contact Forces of Running with Increased Duty Factors.
    Bonnaerens S; VAN Rossom S; Fiers P; VAN Caekenberghe I; Derie R; Kaneko Y; Frederick E; Vanwanseele B; Aerts P; DE Clercq D; Segers V
    Med Sci Sports Exerc; 2022 Nov; 54(11):1842-1849. PubMed ID: 36007163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower extremity joint loads in habitual rearfoot and mid/forefoot strike runners with normal and shortened stride lengths.
    Boyer ER; Derrick TR
    J Sports Sci; 2018 Mar; 36(5):499-505. PubMed ID: 28481686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between ankle-foot-complex mobility during static loading and frontal moment impulses of knee and hip joints during the stance phase.
    Sato T; Iida K; Ohkawa T; Fukui T
    Gait Posture; 2024 Feb; 108():301-306. PubMed ID: 38181482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hip rotation angle is associated with frontal plane knee joint mechanics during running.
    Sakaguchi M; Shimizu N; Yanai T; Stefanyshyn DJ; Kawakami Y
    Gait Posture; 2015 Feb; 41(2):557-61. PubMed ID: 25572723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint contact loading in forefoot and rearfoot strike patterns during running.
    Rooney BD; Derrick TR
    J Biomech; 2013 Sep; 46(13):2201-6. PubMed ID: 23910541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of motion control shoes on the running gait of mature and young females.
    Lilley K; Stiles V; Dixon S
    Gait Posture; 2013 Mar; 37(3):331-5. PubMed ID: 23122596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated sprints alter mechanical work done by hip and knee, but not ankle, sagittal moments.
    Gonçalves BAM; Meinders E; Saxby DJ; Barrett RS; Bourne MN; Diamond LE
    J Sci Med Sport; 2021 Sep; 24(9):939-944. PubMed ID: 33775527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Well Can Modern Nonhabitual Barefoot Youth Adapt to Barefoot and Minimalist Barefoot Technology Shoe Walking, in regard to Gait Symmetry.
    Xu Y; Hou Q; Wang C; Simpson T; Bennett B; Russell S
    Biomed Res Int; 2017; 2017():4316821. PubMed ID: 29214168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower Extremity Kinematic and Kinetic Characteristics as Effects on Running Economy of Recreational Runners.
    Chen S; Segers V; Zhang Q; Zhang Q; Ding H; Li F
    Med Sci Sports Exerc; 2024 Aug; 56(8):1368-1377. PubMed ID: 38547400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of changes in motor skill induced by educational video program to decrease lower-limb joint load during cutting maneuvers: based on musculoskeletal modeling.
    Kim S; So J; Jeon Y; Moon J
    BMC Musculoskelet Disord; 2024 Jul; 25(1):527. PubMed ID: 38982445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of medially wedged insoles on the biomechanics of the lower limbs of runners with excessive foot pronation and foot varus alignment.
    Braga UM; Mendonça LD; Mascarenhas RO; Alves COA; Filho RGT; Resende RA
    Gait Posture; 2019 Oct; 74():242-249. PubMed ID: 31574408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.