BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 32734440)

  • 1. Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy.
    Van Hove I; De Groef L; Boeckx B; Modave E; Hu TT; Beets K; Etienne I; Van Bergen T; Lambrechts D; Moons L; Feyen JHM; Porcu M
    Diabetologia; 2020 Oct; 63(10):2235-2248. PubMed ID: 32734440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NLRP3 Inflammasome May Contribute to Pathologic Neovascularization in the Advanced Stages of Diabetic Retinopathy.
    Chaurasia SS; Lim RR; Parikh BH; Wey YS; Tun BB; Wong TY; Luu CD; Agrawal R; Ghosh A; Mortellaro A; Rackoczy E; Mohan RR; Barathi VA
    Sci Rep; 2018 Feb; 8(1):2847. PubMed ID: 29434227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy.
    Wisniewska-Kruk J; Klaassen I; Vogels IM; Magno AL; Lai CM; Van Noorden CJ; Schlingemann RO; Rakoczy EP
    Exp Eye Res; 2014 May; 122():123-31. PubMed ID: 24703908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal VEGF-A Overexpression Is Not Sufficient to Induce Lymphangiogenesis Regardless of VEGF-C Upregulation and Lyve1+ Macrophage Infiltration.
    Wada I; Nakao S; Yamaguchi M; Kaizu Y; Arima M; Sawa S; Sonoda KH
    Invest Ophthalmol Vis Sci; 2021 Oct; 62(13):17. PubMed ID: 34673901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of retinal alterations in a high fat diet-induced type ii diabetes rodent: Meriones shawi.
    Hammoum I; Mbarek S; Dellaa A; Dubus E; Baccouche B; Azaiz R; Charfeddine R; Picaud S; Ben Chaouacha-Chekir R
    Acta Histochem; 2017 Jan; 119(1):1-9. PubMed ID: 27265809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The retinal tyrosine kinome of diabetic Akimba mice highlights potential for specific Src family kinase inhibition in retinal vascular disease.
    Sergeys J; Van Hove I; Hu TT; Temps C; Carragher NO; Unciti-Broceta A; Feyen JHM; Moons L; Porcu M
    Exp Eye Res; 2020 Aug; 197():108108. PubMed ID: 32590005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration.
    Menon M; Mohammadi S; Davila-Velderrain J; Goods BA; Cadwell TD; Xing Y; Stemmer-Rachamimov A; Shalek AK; Love JC; Kellis M; Hafler BP
    Nat Commun; 2019 Oct; 10(1):4902. PubMed ID: 31653841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of genes encoding glutamate receptors and transporters in rod and cone bipolar cells of the primate retina determined by single-cell polymerase chain reaction.
    Hanna MC; Calkins DJ
    Mol Vis; 2007 Nov; 13():2194-208. PubMed ID: 18087239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BTBR ob/ob mouse model of type 2 diabetes exhibits early loss of retinal function and retinal inflammation followed by late vascular changes.
    Lee VK; Hosking BM; Holeniewska J; Kubala EC; Lundh von Leithner P; Gardner PJ; Foxton RH; Shima DT
    Diabetologia; 2018 Nov; 61(11):2422-2432. PubMed ID: 30094465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IL-1β is upregulated in the diabetic retina and retinal vessels: cell-specific effect of high glucose and IL-1β autostimulation.
    Liu Y; Biarnés Costa M; Gerhardinger C
    PLoS One; 2012; 7(5):e36949. PubMed ID: 22615852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunohistochemical Characterization of Connexin43 Expression in a Mouse Model of Diabetic Retinopathy and in Human Donor Retinas.
    Mugisho OO; Green CR; Zhang J; Binz N; Acosta ML; Rakoczy E; Rupenthal ID
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of clinical correlates of diabetic retinopathy in the Ins2Akita retina.
    McLenachan S; Chen X; McMenamin PG; Rakoczy EP
    Clin Exp Ophthalmol; 2013 Aug; 41(6):582-92. PubMed ID: 23433122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice.
    McLenachan S; Magno AL; Ramos D; Catita J; McMenamin PG; Chen FK; Rakoczy EP; Ruberte J
    Exp Eye Res; 2015 Sep; 138():6-21. PubMed ID: 26122048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysregulation of trophic factors contributes to diabetic retinopathy in the Ins2
    Araújo RS; Silva MS; Santos DF; Silva GA
    Exp Eye Res; 2020 May; 194():108027. PubMed ID: 32259534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis using next generation sequencing reveals molecular signatures of diabetic retinopathy and efficacy of candidate drugs.
    Kandpal RP; Rajasimha HK; Brooks MJ; Nellissery J; Wan J; Qian J; Kern TS; Swaroop A
    Mol Vis; 2012; 18():1123-46. PubMed ID: 22605924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term lutein administration attenuates retinal inflammation and functional deficits in early diabetic retinopathy using the Ins2
    Wang W; Tam KC; Ng TC; Goit RK; Chan KLS; Lo ACY
    BMJ Open Diabetes Res Care; 2020 Jul; 8(1):. PubMed ID: 32665315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomics analysis of pericytes from retinas of diabetic animals reveals novel genes and molecular pathways relevant to blood-retinal barrier alterations in diabetic retinopathy.
    Rangasamy S; Monickaraj F; Legendre C; Cabrera AP; Llaci L; Bilagody C; McGuire P; Das A
    Exp Eye Res; 2020 Jun; 195():108043. PubMed ID: 32376470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditional rod photoreceptor ablation reveals Sall1 as a microglial marker and regulator of microglial morphology in the retina.
    Koso H; Tsuhako A; Lai CY; Baba Y; Otsu M; Ueno K; Nagasaki M; Suzuki Y; Watanabe S
    Glia; 2016 Nov; 64(11):2005-24. PubMed ID: 27459098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous insulin signaling in the RPE contributes to the maintenance of rod photoreceptor function in diabetes.
    Tarchick MJ; Cutler AH; Trobenter TD; Kozlowski MR; Makowski ER; Holoman N; Shao J; Shen B; Anand-Apte B; Samuels IS
    Exp Eye Res; 2019 Mar; 180():63-74. PubMed ID: 30543793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct signature of altered homeostasis in aging rod photoreceptors: implications for retinal diseases.
    Parapuram SK; Cojocaru RI; Chang JR; Khanna R; Brooks M; Othman M; Zareparsi S; Khan NW; Gotoh N; Cogliati T; Swaroop A
    PLoS One; 2010 Nov; 5(11):e13885. PubMed ID: 21079736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.