BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 32734614)

  • 1. Silencing of peroxisome proliferator-activated receptor-alpha alleviates myocardial injury in diabetic cardiomyopathy by downregulating 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 expression.
    Wang L; Bi X; Han J
    IUBMB Life; 2020 Sep; 72(9):1997-2009. PubMed ID: 32734614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HMGCS2 silencing attenuates high glucose-induced in vitro diabetic cardiomyopathy by increasing cell viability, and inhibiting apoptosis, inflammation, and oxidative stress.
    Chen D; Ruan X; Liu Y; He Y
    Bioengineered; 2022 May; 13(5):11417-11429. PubMed ID: 35506308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein PDK4 Interacts with HMGCS2 to Facilitate High Glucoseinduced Myocardial Injuries.
    Tan W; Bao H; Liu Z; Liu Y; Hong L; Shao L
    Curr Mol Med; 2023; 23(10):1104-1115. PubMed ID: 36281857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth differentiation factor 11 regulates high glucose-induced cardiomyocyte pyroptosis and diabetic cardiomyopathy by inhibiting inflammasome activation.
    Zhang J; Wang G; Shi Y; Liu X; Liu S; Chen W; Ning Y; Cao Y; Zhao Y; Li M
    Cardiovasc Diabetol; 2024 May; 23(1):160. PubMed ID: 38715043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MiR-30c/PGC-1β protects against diabetic cardiomyopathy via PPARα.
    Yin Z; Zhao Y; He M; Li H; Fan J; Nie X; Yan M; Chen C; Wang DW
    Cardiovasc Diabetol; 2019 Jan; 18(1):7. PubMed ID: 30635067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of the Ras/MAPK/PPARγ signaling axis alleviates diabetic mellitus-induced erectile dysfunction through suppression of corpus cavernosal endothelial cell apoptosis by inhibiting HMGCS2 expression.
    Zhang Z; Zhang HY; Zhang Y; Li H
    Endocrine; 2019 Mar; 63(3):615-631. PubMed ID: 30460485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SFRP2 Improves Mitochondrial Dynamics and Mitochondrial Biogenesis, Oxidative Stress, and Apoptosis in Diabetic Cardiomyopathy.
    Ma T; Huang X; Zheng H; Huang G; Li W; Liu X; Liang J; Cao Y; Hu Y; Huang Y
    Oxid Med Cell Longev; 2021; 2021():9265016. PubMed ID: 34790288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hmgcs2 is the hub gene in diabetic cardiomyopathy and is negatively regulated by Hmgcs2, promoting high glucose-induced cardiomyocyte injury.
    Wang Y; Ping LF; Bai FY; Zhang XH; Li GH
    Immun Inflamm Dis; 2024 Mar; 12(3):e1191. PubMed ID: 38477658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Streptozotocin-induced diabetic cardiomyopathy in rats: ameliorative effect of PIPERINE via Bcl2, Bax/Bcl2, and caspase-3 pathways.
    Wang Y; Sun H; Zhang J; Xia Z; Chen W
    Biosci Biotechnol Biochem; 2020 Dec; 84(12):2533-2544. PubMed ID: 32892714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corin is down-regulated and exerts cardioprotective action via activating pro-atrial natriuretic peptide pathway in diabetic cardiomyopathy.
    Pang A; Hu Y; Zhou P; Long G; Tian X; Men L; Shen Y; Liu Y; Cui Y
    Cardiovasc Diabetol; 2015 Oct; 14():134. PubMed ID: 26446774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weighted Gene Co-Expression Network Analysis Identifies ANGPTL4 as a Key Regulator in Diabetic Cardiomyopathy
    Dai L; Xie Y; Zhang W; Zhong X; Wang M; Jiang H; He Z; Liu X; Zeng H; Wang H
    Front Endocrinol (Lausanne); 2021; 12():705154. PubMed ID: 34616362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microarray profiling analysis identifies the mechanism of miR-200b-3p/mRNA-CD36 affecting diabetic cardiomyopathy via peroxisome proliferator activated receptor-γ signaling pathway.
    Xu L; Chen W; Ma M; Chen A; Tang C; Zhang C; Cai L
    J Cell Biochem; 2019 Apr; 120(4):5193-5206. PubMed ID: 30506990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy.
    Wang L; Cai Y; Jian L; Cheung CW; Zhang L; Xia Z
    Cardiovasc Diabetol; 2021 Jan; 20(1):2. PubMed ID: 33397369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic cardioptotection by tilianin and syringin in diabetic cardiomyopathy involves interaction of TLR4/NF-κB/NLRP3 and PGC1a/SIRT3 pathways.
    Yao J; Li Y; Jin Y; Chen Y; Tian L; He W
    Int Immunopharmacol; 2021 Jul; 96():107728. PubMed ID: 33971494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of nuclear β-catenin/c-Myc axis promotes oxidative stress injury in streptozotocin-induced diabetic cardiomyopathy.
    Liu P; Su J; Song X; Wang S
    Biochem Biophys Res Commun; 2017 Dec; 493(4):1573-1580. PubMed ID: 28989026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis and JNK/NF-κB signalling pathway.
    Liu X; Guo B; Zhang W; Ma B; Li Y
    J Biochem; 2021 Oct; 170(3):349-362. PubMed ID: 33837411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model.
    Luo B; Li B; Wang W; Liu X; Xia Y; Zhang C; Zhang M; Zhang Y; An F
    PLoS One; 2014; 9(8):e104771. PubMed ID: 25136835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Heme Oxygenase 1 in the Protective Effect of Caloric Restriction against Diabetic Cardiomyopathy.
    Waldman M; Nudelman V; Shainberg A; Zemel R; Kornwoski R; Aravot D; Peterson SJ; Arad M; Hochhauser E
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31100876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway.
    Liu ZW; Wang JK; Qiu C; Guan GC; Liu XH; Li SJ; Deng ZR
    Acta Pharmacol Sin; 2015 Mar; 36(3):323-33. PubMed ID: 25619390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of yellow wine polyphenols on cardiomyocyte apoptosis in diabetic cardiomyopathy rats].
    Pan SL; Lin H; Luo HQ; Gao FD; Meng LP; Guo Y; Guo HY; Chi JF
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2017 May; 33(5):431-435. PubMed ID: 29926588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.