These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32735057)

  • 1. Unconventional Biocatalytic Approaches to the Synthesis of Chiral Sulfoxides.
    Anselmi S; Aggarwal N; Moody TS; Castagnolo D
    Chembiochem; 2021 Jan; 22(2):298-307. PubMed ID: 32735057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterisation of bacterial strains containing enantioselective DMSO reductase activity: application to the kinetic resolution of racemic sulfoxides.
    Luckarift HR; Dalton H; Sharma ND; Boyd DR; Holt RA
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):678-85. PubMed ID: 15322772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of MsrA homologues for the preparation of (R)-sulfoxides at high substrate concentrations.
    Yang J; Wen Y; Peng L; Chen Y; Cheng X; Chen Y
    Org Biomol Chem; 2019 Mar; 17(13):3381-3388. PubMed ID: 30860233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoenzymatic synthesis of enantiopure hydroxy sulfoxides derived from substituted arenes.
    Boyd DR; Sharma ND; Malone JF; Ljubez V; Murphy D; Shepherd SD; Allen CC
    Org Biomol Chem; 2016 Mar; 14(9):2651-64. PubMed ID: 26907786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Chiral Sulfoxides by A Cyclic Oxidation-Reduction Multi-Enzymatic Cascade Biocatalysis.
    Tian J; Zhou S; Chen Y; Zhao Y; Li S; Yang P; Xu X; Chen Y; Cheng X; Yang J
    Chemistry; 2024 Apr; 30(19):e202304081. PubMed ID: 38288909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the binding sites of plant ferredoxin for two ferredoxin-dependent enzymes.
    De Pascalis AR; Schürmann P; Bosshard HR
    FEBS Lett; 1994 Jan; 337(3):217-20. PubMed ID: 8293803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfoxide Reductases and Applications in Biocatalytic Preparation of Chiral Sulfoxides: A Mini-Review.
    Peng T; Cheng X; Chen Y; Yang J
    Front Chem; 2021; 9():714899. PubMed ID: 34490206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemically mediated enantioselective reduction of chiral sulfoxides.
    Chen KI; Challinor VL; Kielmann L; Sharpe PC; De Voss JJ; Kappler U; McEwan AG; Bernhardt PV
    J Biol Inorg Chem; 2015 Mar; 20(2):395-402. PubMed ID: 25410832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic kinetic resolution of chiral sulfoxides - an enantiocomplementary approach.
    Nosek V; Míšek J
    Chem Commun (Camb); 2019 Aug; 55(70):10480-10483. PubMed ID: 31411608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress on deep eutectic solvents in biocatalysis.
    Xu P; Zheng GW; Zong MH; Li N; Lou WY
    Bioresour Bioprocess; 2017; 4(1):34. PubMed ID: 28794956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep eutectic solvents for biocatalytic transformations: focused lipase-catalyzed organic reactions.
    Tan JN; Dou Y
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1481-1496. PubMed ID: 31907576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multienzyme Redox System with Cofactor Regeneration for Cyclic Deracemization of Sulfoxides.
    Peng T; Tian J; Zhao Y; Jiang X; Cheng X; Deng G; Zhang Q; Wang Z; Yang J; Chen Y
    Angew Chem Int Ed Engl; 2022 Sep; 61(37):e202209272. PubMed ID: 35831972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective deoxygenation of alkyl aryl sulfoxides by DMSO reductase from Rhodobacter sphaeroides f.s. denitrificans.
    Abo M; Tachibana M; Okubo A; Yamazaki S
    Bioorg Med Chem; 1995 Feb; 3(2):109-12. PubMed ID: 7796044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric reduction of racemic sulfoxides by dimethyl sulfoxide reductases from Rhodobacter capsulatus, Escherichia coli and Proteus species.
    Hanlon SP; Graham DL; Hogan PJ; Holt RA; Reeve CD; Shaw AL; McEwan AG
    Microbiology (Reading); 1998 Aug; 144 ( Pt 8)():2247-2253. PubMed ID: 9720047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chimeric iron-sulfur flavoprotein endowed with NADPH-cytochrome c reductase activity.
    Zanetti G; Piubelli L; Zucca Tanci R; Aliverti A
    Biochem Soc Trans; 1996 Feb; 24(1):22S. PubMed ID: 8674668
    [No Abstract]   [Full Text] [Related]  

  • 16. Biocatalysis and Biomass Conversion in Alternative Reaction Media.
    Sheldon RA
    Chemistry; 2016 Sep; 22(37):12984-99. PubMed ID: 27383560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-domain iron-sulfur flavoprotein obtained through gene fusion of ferredoxin and ferredoxin-NADP+ reductase from spinach leaves.
    Aliverti A; Zanetti G
    Biochemistry; 1997 Dec; 36(48):14771-7. PubMed ID: 9398197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective sulfoxidations employing the thermostable cyclohexanone monooxygenase from Thermocrispum municipale.
    de Gonzalo G; Franconetti A
    Enzyme Microb Technol; 2018 Jun; 113():24-28. PubMed ID: 29602383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism of the redox-dependent interaction between NADH-dependent ferredoxin reductase and Rieske-type [2Fe-2S] ferredoxin.
    Senda M; Kishigami S; Kimura S; Fukuda M; Ishida T; Senda T
    J Mol Biol; 2007 Oct; 373(2):382-400. PubMed ID: 17850818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction.
    Bierbaumer S; Schmermund L; List A; Winkler CK; Glueck SM; Kroutil W
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202117103. PubMed ID: 35188997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.