These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 32735147)

  • 1. Open access in silico tools to predict the ADMET profiling of drug candidates.
    Kar S; Leszczynski J
    Expert Opin Drug Discov; 2020 Dec; 15(12):1473-1487. PubMed ID: 32735147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ADMET Profiling in Drug Discovery and Development: Perspectives of In Silico, In Vitro and Integrated Approaches.
    Daoud NE; Borah P; Deb PK; Venugopala KN; Hourani W; Alzweiri M; Bardaweel SK; Tiwari V
    Curr Drug Metab; 2021; 22(7):503-522. PubMed ID: 34225615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico ADME-Tox modeling: progress and prospects.
    Alqahtani S
    Expert Opin Drug Metab Toxicol; 2017 Nov; 13(11):1147-1158. PubMed ID: 28988506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Silico Tools and Software to Predict ADMET of New Drug Candidates.
    Kar S; Roy K; Leszczynski J
    Methods Mol Biol; 2022; 2425():85-115. PubMed ID: 35188629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADMET in silico modelling: towards prediction paradise?
    van de Waterbeemd H; Gifford E
    Nat Rev Drug Discov; 2003 Mar; 2(3):192-204. PubMed ID: 12612645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Recent Appraisal of Artificial Intelligence and In Silico ADMET Prediction in the Early Stages of Drug Discovery.
    Kumar A; Kini SG; Rathi E
    Mini Rev Med Chem; 2021; 21(18):2788-2800. PubMed ID: 33797376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling ADMET.
    Ghosh J; Lawless MS; Waldman M; Gombar V; Fraczkiewicz R
    Methods Mol Biol; 2016; 1425():63-83. PubMed ID: 27311462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADMET profiling of geographically diverse phytochemical using chemoinformatic tools.
    Fatima S; Gupta P; Sharma S; Sharma A; Agarwal SM
    Future Med Chem; 2020 Jan; 12(1):69-87. PubMed ID: 31793338
    [No Abstract]   [Full Text] [Related]  

  • 9. The importance of employing computational resources for the automation of drug discovery.
    Rosales-Hernández MC; Correa-Basurto J
    Expert Opin Drug Discov; 2015 Mar; 10(3):213-9. PubMed ID: 25682781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combating Diseases with Computational Strategies Used for Drug Design and Discovery.
    Makhouri FR; Ghasemi JB
    Curr Top Med Chem; 2018; 18(32):2743-2773. PubMed ID: 30663568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of ADMET properties: how far have we come?
    Dearden JC
    Expert Opin Drug Metab Toxicol; 2007 Oct; 3(5):635-9. PubMed ID: 17916052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive QSAR modeling for the successful predictions of the ADMET properties of candidate drug molecules.
    Khan MT; Sylte I
    Curr Drug Discov Technol; 2007 Oct; 4(3):141-9. PubMed ID: 17985997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving compound quality through in vitro and in silico physicochemical profiling.
    van de Waterbeemd H
    Chem Biodivers; 2009 Nov; 6(11):1760-6. PubMed ID: 19937820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Drug Designing and Prediction Of Important Parameters Using in silico Methods- A Review.
    Khan T; Lawrence AJ; Azad I; Raza S; Joshi S; Khan AR
    Curr Comput Aided Drug Des; 2019; 15(5):384-397. PubMed ID: 30914032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico approaches and tools for the prediction of drug metabolism and fate: A review.
    Kazmi SR; Jun R; Yu MS; Jung C; Na D
    Comput Biol Med; 2019 Mar; 106():54-64. PubMed ID: 30682640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of in silico and in vitro tools for scaffold optimization during drug discovery: predicting P-glycoprotein efflux.
    Desai PV; Sawada GA; Watson IA; Raub TJ
    Mol Pharm; 2013 Apr; 10(4):1249-61. PubMed ID: 23363443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Informing the Selection of Screening Hit Series with in Silico Absorption, Distribution, Metabolism, Excretion, and Toxicity Profiles.
    Sanders JM; Beshore DC; Culberson JC; Fells JI; Imbriglio JE; Gunaydin H; Haidle AM; Labroli M; Mattioni BE; Sciammetta N; Shipe WD; Sheridan RP; Suen LM; Verras A; Walji A; Joshi EM; Bueters T
    J Med Chem; 2017 Aug; 60(16):6771-6780. PubMed ID: 28418656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery.
    Lin J; Sahakian DC; de Morais SM; Xu JJ; Polzer RJ; Winter SM
    Curr Top Med Chem; 2003; 3(10):1125-54. PubMed ID: 12769713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward in silico structure-based ADMET prediction in drug discovery.
    Moroy G; Martiny VY; Vayer P; Villoutreix BO; Miteva MA
    Drug Discov Today; 2012 Jan; 17(1-2):44-55. PubMed ID: 22056716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning for In Silico ADMET Prediction.
    Jia L; Gao H
    Methods Mol Biol; 2022; 2390():447-460. PubMed ID: 34731482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.