These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 32735298)

  • 1. Hot-carrier generation from plasmons in an antenna-spacer-mirror nanostructure.
    Sun Z; Fang Y
    Opt Lett; 2020 Aug; 45(15):4357-4360. PubMed ID: 32735298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures.
    Fang Y; Jiao Y; Xiong K; Ogier R; Yang ZJ; Gao S; Dahlin AB; Käll M
    Nano Lett; 2015 Jun; 15(6):4059-65. PubMed ID: 25938263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional hot electron photovoltaic device with vertically aligned TiO
    Goddeti KC; Lee C; Lee YK; Park JY
    Sci Rep; 2018 May; 8(1):7330. PubMed ID: 29743488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts.
    Zhang C; Zhao H; Zhou L; Schlather AE; Dong L; McClain MJ; Swearer DF; Nordlander P; Halas NJ
    Nano Lett; 2016 Oct; 16(10):6677-6682. PubMed ID: 27676189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical tuning effect for Schottky barrier and hot-electron harvest in a plasmonic Au/TiO
    Sun Z; Fang Y
    Sci Rep; 2021 Jan; 11(1):338. PubMed ID: 33432085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar, narrowband, and tunable photodetection in the near-infrared with Au/TiO
    Yu T; Zhang C; Liu H; Liu J; Li K; Qin L; Wu S; Li X
    Nanoscale; 2019 Dec; 11(48):23182-23187. PubMed ID: 31777895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytic glycerol oxidation enabled by surface plasmon polariton-induced hot carriers in Kretschmann configuration.
    Chung K; Zhu X; Zhuo X; Jang YJ; Choi CH; Lee JS; Kim SH; Kim M; Kim K; Kim D; Ham HC; Baba A; Wang J; Kim DH
    Nanoscale; 2019 Dec; 11(48):23234-23240. PubMed ID: 31782461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planar Hot-Electron Photodetection with Tamm Plasmons.
    Zhang C; Wu K; Giannini V; Li X
    ACS Nano; 2017 Feb; 11(2):1719-1727. PubMed ID: 28117569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-insensitive hot-electron infrared photodetection by double Schottky junction and multilayer grating.
    Zhang Q; Zhang C; Qin L; Li X
    Opt Lett; 2018 Jul; 43(14):3325-3328. PubMed ID: 30004497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy.
    Zhan C; Chen XJ; Huang YF; Wu DY; Tian ZQ
    Acc Chem Res; 2019 Oct; 52(10):2784-2792. PubMed ID: 31532621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial Construction of Plasmonic Nanostructures for the Utilization of the Plasmon-Excited Electrons and Holes.
    Zhan C; Wang ZY; Zhang XG; Chen XJ; Huang YF; Hu S; Li JF; Wu DY; Moskovits M; Tian ZQ
    J Am Chem Soc; 2019 May; 141(20):8053-8057. PubMed ID: 31070906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced water splitting under modal strong coupling conditions.
    Shi X; Ueno K; Oshikiri T; Sun Q; Sasaki K; Misawa H
    Nat Nanotechnol; 2018 Oct; 13(10):953-958. PubMed ID: 30061658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significant enhancement of yellow-green light emission of TiO2 thin films using Au localized surface plasmons: effect of dielectric MgO spacer layer thickness.
    Zhang C; Liu W; Xu H; Ma J; Liu Y
    J Nanosci Nanotechnol; 2014 May; 14(5):3748-52. PubMed ID: 24734627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective propagation and beam splitting of surface plasmons on metallic nanodisk chains.
    Hu Y; Zhao D; Wang Z; Chen F; Xiong X; Peng R; Wang M
    Opt Lett; 2017 May; 42(9):1744-1747. PubMed ID: 28454150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface enhanced resonant Raman scattering in hybrid MoSe
    Abid I; Chen W; Yuan J; Najmaei S; Peñafiel EC; Péchou R; Large N; Lou J; Mlayah A
    Opt Express; 2018 Oct; 26(22):29411-29423. PubMed ID: 30470105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlated Absorption and Scattering Spectroscopy of Individual Platinum-Decorated Gold Nanorods Reveals Strong Excitation Enhancement in the Nonplasmonic Metal.
    Joplin A; Hosseini Jebeli SA; Sung E; Diemler N; Straney PJ; Yorulmaz M; Chang WS; Millstone JE; Link S
    ACS Nano; 2017 Dec; 11(12):12346-12357. PubMed ID: 29155558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.