BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 32735344)

  • 41. Spinal synaptic enhancement with acute intermittent hypoxia improves respiratory function after chronic cervical spinal cord injury.
    Golder FJ; Mitchell GS
    J Neurosci; 2005 Mar; 25(11):2925-32. PubMed ID: 15772352
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phrenic-to-intercostal reflex activity in response to high frequency spinal cord stimulation (HF-SCS).
    Kowalski KE; DiMarco AF
    Respir Physiol Neurobiol; 2022 Dec; 306():103962. PubMed ID: 36064141
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cervical spinal cord hemisection impacts sigh and the respiratory reset in male rats.
    Fogarty MJ; Zhan WZ; Mantilla CB; Sieck GC
    Physiol Rep; 2024 Mar; 12(5):e15973. PubMed ID: 38467570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Postnatal survival of phrenic motor neurons is promoted by BDNF/TrkB.FL signaling.
    Brandenburg JE; Fogarty MJ; Zhan WZ; Kopper LA; Sieck GC
    J Appl Physiol (1985); 2024 May; 136(5):1113-1121. PubMed ID: 38511211
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Morphological plasticity induced in the phrenic nucleus following cervical cold block of descending respiratory drive.
    Castro-Moure F; Goshgarian HG
    Exp Neurol; 1997 Oct; 147(2):299-310. PubMed ID: 9344555
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bulbospinal respiratory neurons are a source of double synapses onto phrenic motoneurons following cervical spinal cord hemisection in adult rats.
    Goshgarian HG; Ellenberger HH; Feldman JL
    Brain Res; 1993 Jan; 600(1):169-73. PubMed ID: 8422584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pre-phrenic interneurons: Characterization and role in phrenic pattern formation and respiratory recovery following spinal cord injury.
    Zaki Ghali MG; Britz G; Lee KZ
    Respir Physiol Neurobiol; 2019 Jul; 265():24-31. PubMed ID: 30315961
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-Distance Axon Regeneration Promotes Recovery of Diaphragmatic Respiratory Function after Spinal Cord Injury.
    Urban MW; Ghosh B; Block CG; Strojny LR; Charsar BA; Goulão M; Komaravolu SS; Smith GM; Wright MC; Li S; Lepore AC
    eNeuro; 2019; 6(5):. PubMed ID: 31427403
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Astrocyte progenitor transplantation promotes regeneration of bulbospinal respiratory axons, recovery of diaphragm function, and a reduced macrophage response following cervical spinal cord injury.
    Goulão M; Ghosh B; Urban MW; Sahu M; Mercogliano C; Charsar BA; Komaravolu S; Block CG; Smith GM; Wright MC; Lepore AC
    Glia; 2019 Mar; 67(3):452-466. PubMed ID: 30548313
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Respiratory axon regeneration in the chronically injured spinal cord.
    Cheng L; Sami A; Ghosh B; Goudsward HJ; Smith GM; Wright MC; Li S; Lepore AC
    Neurobiol Dis; 2021 Jul; 155():105389. PubMed ID: 33975016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.
    Mantilla CB; Seven YB; Sieck GC
    Prog Brain Res; 2014; 209():309-29. PubMed ID: 24746055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mitochondrial adaptations to inactivity in diaphragm muscle fibers.
    Brown AD; Fogarty MJ; Davis LA; Dasgupta D; Mantilla CB; Sieck GC
    J Appl Physiol (1985); 2022 Jul; 133(1):191-204. PubMed ID: 35678745
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrastructural quantitative analysis of glutamatergic and GABAergic synaptic terminals in the phrenic nucleus after spinal cord injury.
    Tai Q; Goshgarian HG
    J Comp Neurol; 1996 Aug; 372(3):343-55. PubMed ID: 8873865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.
    Satkunendrarajah K; Nassiri F; Karadimas SK; Lip A; Yao G; Fehlings MG
    Exp Neurol; 2016 Feb; 276():59-71. PubMed ID: 26394202
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Systemic administration of rolipram increases medullary and spinal cAMP and activates a latent respiratory motor pathway after high cervical spinal cord injury.
    Kajana S; Goshgarian HG
    J Spinal Cord Med; 2009; 32(2):175-82. PubMed ID: 19569465
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Local BDNF Delivery to the Injured Cervical Spinal Cord using an Engineered Hydrogel Enhances Diaphragmatic Respiratory Function.
    Ghosh B; Wang Z; Nong J; Urban MW; Zhang Z; Trovillion VA; Wright MC; Zhong Y; Lepore AC
    J Neurosci; 2018 Jun; 38(26):5982-5995. PubMed ID: 29891731
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phrenic motor neuron survival below cervical spinal cord hemisection.
    Allen LL; Nichols NL; Asa ZA; Emery AT; Ciesla MC; Santiago JV; Holland AE; Mitchell GS; Gonzalez-Rothi EJ
    Exp Neurol; 2021 Dec; 346():113832. PubMed ID: 34363808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synchronization of presynaptic input to motor units of tongue, inspiratory intercostal, and diaphragm muscles.
    Rice A; Fuglevand AJ; Laine CM; Fregosi RF
    J Neurophysiol; 2011 May; 105(5):2330-6. PubMed ID: 21307319
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glutamate receptor plasticity and activity-regulated cytoskeletal associated protein regulation in the phrenic motor nucleus may mediate spontaneous recovery of the hemidiaphragm following chronic cervical spinal cord injury.
    Alilain WJ; Goshgarian HG
    Exp Neurol; 2008 Aug; 212(2):348-57. PubMed ID: 18534577
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phrenic motoneurons: output elements of a highly organized intraspinal network.
    Ghali MGZ
    J Neurophysiol; 2018 Mar; 119(3):1057-1070. PubMed ID: 29021393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.