These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 32735602)

  • 1. Adaptation of balancing behaviour during continuous perturbations of stance. Supra-postural visual tasks and platform translation frequency modulate adaptation rate.
    Sozzi S; Nardone A; Schieppati M
    PLoS One; 2020; 15(7):e0236702. PubMed ID: 32735602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation to continuous perturbation of balance: progressive reduction of postural muscle activity with invariant or increasing oscillations of the center of mass depending on perturbation frequency and vision conditions.
    Schmid M; Bottaro A; Sozzi S; Schieppati M
    Hum Mov Sci; 2011 Apr; 30(2):262-78. PubMed ID: 21440318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vision Does Not Necessarily Stabilize the Head in Space During Continuous Postural Perturbations.
    Sozzi S; Nardone A; Schieppati M
    Front Neurol; 2019; 10():748. PubMed ID: 31354614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The control of equilibrium in Parkinson's disease patients: delayed adaptation of balancing strategy to shifts in sensory set during a dynamic task.
    De Nunzio AM; Nardone A; Schieppati M
    Brain Res Bull; 2007 Sep; 74(4):258-70. PubMed ID: 17720548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time to reconfigure balancing behaviour in man: changing visual condition while riding a continuously moving platform.
    De Nunzio AM; Schieppati M
    Exp Brain Res; 2007 Mar; 178(1):18-36. PubMed ID: 17013618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Head stabilization on a continuously oscillating platform: the effect of a proprioceptive disturbance on the balancing strategy.
    De Nunzio AM; Nardone A; Schieppati M
    Exp Brain Res; 2005 Aug; 165(2):261-72. PubMed ID: 15856203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability in a dynamic postural task attests ample flexibility in balance control mechanisms.
    Schieppati M; Giordano A; Nardone A
    Exp Brain Res; 2002 May; 144(2):200-10. PubMed ID: 12012158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of changing visual condition and frequency of horizontal oscillations on postural balance of standing healthy subjects.
    Cappa P; Patanè F; Rossi S; Petrarca M; Castelli E; Berthoz A
    Gait Posture; 2008 Nov; 28(4):615-26. PubMed ID: 18539460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper body balance control strategy during continuous 3D postural perturbation in young adults.
    Amori V; Petrarca M; Patané F; Castelli E; Cappa P
    Gait Posture; 2015 Jan; 41(1):19-25. PubMed ID: 25205381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graded changes in balancing behavior as a function of visual acuity.
    Schmid M; Casabianca L; Bottaro A; Schieppati M
    Neuroscience; 2008 Jun; 153(4):1079-91. PubMed ID: 18440719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standing on a continuously moving platform: is body inertia counteracted or exploited?
    Corna S; Tarantola J; Nardone A; Giordano A; Schieppati M
    Exp Brain Res; 1999 Feb; 124(3):331-41. PubMed ID: 9989439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium during static and dynamic tasks in blind subjects: no evidence of cross-modal plasticity.
    Schmid M; Nardone A; De Nunzio AM; Schmid M; Schieppati M
    Brain; 2007 Aug; 130(Pt 8):2097-107. PubMed ID: 17611240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of intrinsic and reflexive contributions to low-back stabilization due to vision, task instruction, and perturbation bandwidth.
    van Drunen P; Koumans Y; van der Helm FC; van Dieën JH; Happee R
    Exp Brain Res; 2015 Mar; 233(3):735-49. PubMed ID: 25567085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergence of postural patterns as a function of vision and translation frequency.
    Buchanan JJ; Horak FB
    J Neurophysiol; 1999 May; 81(5):2325-39. PubMed ID: 10322069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postural coordination in elderly subjects standing on a periodically moving platform.
    Nardone A; Grasso M; Tarantola J; Corna S; Schieppati M
    Arch Phys Med Rehabil; 2000 Sep; 81(9):1217-23. PubMed ID: 10987165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of sensorimotor integration to spinal stabilization in humans.
    Goodworth AD; Peterka RJ
    J Neurophysiol; 2009 Jul; 102(1):496-512. PubMed ID: 19403751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of visual velocity and displacement cues to human balancing of support surface tilt.
    Assländer L; Hettich G; Gollhofer A; Mergner T
    Exp Brain Res; 2013 Jul; 228(3):297-304. PubMed ID: 23686151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transitions in a postural task: do the recruitment and suppression of degrees of freedom stabilize posture?
    Buchanan JJ; Horak FB
    Exp Brain Res; 2001 Aug; 139(4):482-94. PubMed ID: 11534873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface height effects on postural control: a hypothesis for a stiffness strategy for stance.
    Carpenter MG; Frank JS; Silcher CP
    J Vestib Res; 1999; 9(4):277-86. PubMed ID: 10472040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks.
    Courtine G; Pozzo T
    Exp Brain Res; 2004 Sep; 158(1):86-99. PubMed ID: 15164151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.