These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Expanding the genotypic spectrum of TXNL4A variants in Burn-McKeown syndrome. Wood KA; Ellingford JM; Thomas HB; ; Douzgou S; Beaman GM; Hobson E; Prescott K; O'Keefe RT; Newman WG Clin Genet; 2022 Feb; 101(2):255-259. PubMed ID: 34713892 [TBL] [Abstract][Full Text] [Related]
3. Burn-McKeown syndrome with biallelic promoter type 2 deletion in TXNL4A in two siblings. Narayanan DL; Purushothama G; Bhavani GS; Shukla A Am J Med Genet A; 2020 Jun; 182(6):1313-1315. PubMed ID: 32187816 [TBL] [Abstract][Full Text] [Related]
4. Compound heterozygosity of low-frequency promoter deletions and rare loss-of-function mutations in TXNL4A causes Burn-McKeown syndrome. Wieczorek D; Newman WG; Wieland T; Berulava T; Kaffe M; Falkenstein D; Beetz C; Graf E; Schwarzmayr T; Douzgou S; Clayton-Smith J; Daly SB; Williams SG; Bhaskar SS; Urquhart JE; Anderson B; O'Sullivan J; Boute O; Gundlach J; Czeschik JC; van Essen AJ; Hazan F; Park S; Hing A; Kuechler A; Lohmann DR; Ludwig KU; Mangold E; Steenpaß L; Zeschnigk M; Lemke JR; Lourenco CM; Hehr U; Prott EC; Waldenberger M; Böhmer AC; Horsthemke B; O'Keefe RT; Meitinger T; Burn J; Lüdecke HJ; Strom TM Am J Hum Genet; 2014 Dec; 95(6):698-707. PubMed ID: 25434003 [TBL] [Abstract][Full Text] [Related]
5. Identification of causative variants in TXNL4A in Burn-McKeown syndrome and isolated choanal atresia. Goos JAC; Swagemakers SMA; Twigg SRF; van Dooren MF; Hoogeboom AJM; Beetz C; Günther S; Magielsen FJ; Ockeloen CW; A Ramos-Arroyo M; Pfundt R; Yntema HG; van der Spek PJ; Stanier P; Wieczorek D; Wilkie AOM; van den Ouweland AMW; Mathijssen IMJ; Hurst JA Eur J Hum Genet; 2017 Oct; 25(10):1126-1133. PubMed ID: 28905882 [TBL] [Abstract][Full Text] [Related]
6. Spliceosomopathies and neurocristopathies: Two sides of the same coin? Beauchamp MC; Alam SS; Kumar S; Jerome-Majewska LA Dev Dyn; 2020 Aug; 249(8):924-945. PubMed ID: 32315467 [TBL] [Abstract][Full Text] [Related]
7. A review of craniofacial disorders caused by spliceosomal defects. Lehalle D; Wieczorek D; Zechi-Ceide RM; Passos-Bueno MR; Lyonnet S; Amiel J; Gordon CT Clin Genet; 2015 Nov; 88(5):405-15. PubMed ID: 25865758 [TBL] [Abstract][Full Text] [Related]
9. Severe intellectual disability in a patient with Burn-McKeown syndrome. Strang-Karlsson S; Urquhart J; Newman WG; Douzgou S Clin Dysmorphol; 2017 Jul; 26(3):193-194. PubMed ID: 28225383 [No Abstract] [Full Text] [Related]
10. The Core Splicing Factors EFTUD2, SNRPB and TXNL4A Are Essential for Neural Crest and Craniofacial Development. Park BY; Tachi-Duprat M; Ihewulezi C; Devotta A; Saint-Jeannet JP J Dev Biol; 2022 Jul; 10(3):. PubMed ID: 35893124 [TBL] [Abstract][Full Text] [Related]
11. Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Mishra SK; Ammon T; Popowicz GM; Krajewski M; Nagel RJ; Ares M; Holak TA; Jentsch S Nature; 2011 May; 474(7350):173-8. PubMed ID: 21614000 [TBL] [Abstract][Full Text] [Related]
12. Splicing Enhancers at Intron-Exon Borders Participate in Acceptor Splice Sites Recognition. Kováčová T; Souček P; Hujová P; Freiberger T; Grodecká L Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32911621 [TBL] [Abstract][Full Text] [Related]
13. The Role of the U5 snRNP in Genetic Disorders and Cancer. Wood KA; Eadsforth MA; Newman WG; O'Keefe RT Front Genet; 2021; 12():636620. PubMed ID: 33584830 [TBL] [Abstract][Full Text] [Related]
14. Regulation of 3' splice site selection after step 1 of splicing by spliceosomal C* proteins. Dybkov O; Preußner M; El Ayoubi L; Feng VY; Harnisch C; Merz K; Leupold P; Yudichev P; Agafonov DE; Will CL; Girard C; Dienemann C; Urlaub H; Kastner B; Heyd F; Lührmann R Sci Adv; 2023 Mar; 9(9):eadf1785. PubMed ID: 36867703 [TBL] [Abstract][Full Text] [Related]
15. EIF4A3 deficient human iPSCs and mouse models demonstrate neural crest defects that underlie Richieri-Costa-Pereira syndrome. Miller EE; Kobayashi GS; Musso CM; Allen M; Ishiy FAA; de Caires LC; Goulart E; Griesi-Oliveira K; Zechi-Ceide RM; Richieri-Costa A; Bertola DR; Passos-Bueno MR; Silver DL Hum Mol Genet; 2017 Jun; 26(12):2177-2191. PubMed ID: 28334780 [TBL] [Abstract][Full Text] [Related]
16. Craniofacial Defects in Embryos with Homozygous Deletion of Beauchamp MC; Boucher A; Dong Y; Aber R; Jerome-Majewska LA Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012294 [TBL] [Abstract][Full Text] [Related]
17. Identification of proteins that interact with exon sequences, splice sites, and the branchpoint sequence during each stage of spliceosome assembly. Chiara MD; Gozani O; Bennett M; Champion-Arnaud P; Palandjian L; Reed R Mol Cell Biol; 1996 Jul; 16(7):3317-26. PubMed ID: 8668147 [TBL] [Abstract][Full Text] [Related]
18. The 35S U5 snRNP Is Generated from the Activated Spliceosome during In vitro Splicing. Makarova OV; Makarov EM PLoS One; 2015; 10(5):e0128430. PubMed ID: 26020933 [TBL] [Abstract][Full Text] [Related]
19. Activation of WNT signaling restores the facial deficits in a zebrafish with defects in cholesterol metabolism. Castro VL; Reyes-Nava NG; Sanchez BB; Gonzalez CG; Paz D; Quintana AM Genesis; 2020 Dec; 58(12):e23397. PubMed ID: 33197123 [TBL] [Abstract][Full Text] [Related]