BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32735727)

  • 1. Petrosal and bony labyrinth morphology of the stem paenungulate mammal (Paenungulatomorpha) Ocepeia daouiensis from the Paleocene of Morocco.
    Gheerbrant E; Schmitt A; Billet G
    J Anat; 2022 Apr; 240(4):595-611. PubMed ID: 32735727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocepeia (Middle Paleocene of Morocco): the oldest skull of an afrotherian mammal.
    Gheerbrant E; Amaghzaz M; Bouya B; Goussard F; Letenneur C
    PLoS One; 2014; 9(2):e89739. PubMed ID: 24587000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ear region of earliest known elephant relatives: new light on the ancestral morphotype of proboscideans and afrotherians.
    Schmitt A; Gheerbrant E
    J Anat; 2016 Jan; 228(1):137-52. PubMed ID: 26510535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergence of Afrotherian and Laurasiatherian Ungulate-Like Mammals: First Morphological Evidence from the Paleocene of Morocco.
    Gheerbrant E; Filippo A; Schmitt A
    PLoS One; 2016; 11(7):e0157556. PubMed ID: 27384169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early African Fossils Elucidate the Origin of Embrithopod Mammals.
    Gheerbrant E; Schmitt A; Kocsis L
    Curr Biol; 2018 Jul; 28(13):2167-2173.e2. PubMed ID: 30008332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paleocene emergence of elephant relatives and the rapid radiation of African ungulates.
    Gheerbrant E
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10717-21. PubMed ID: 19549873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Petrosal anatomy in the fossil mammal Necrolestes: evidence for metatherian affinities and comparisons with the extant marsupial mole.
    Ladevèze S; Asher RJ; Sánchez-Villagra MR
    J Anat; 2008 Dec; 213(6):686-97. PubMed ID: 19094184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammals.
    Ruf I; Luo ZX; Wible JR; Martin T
    J Anat; 2009 May; 214(5):679-93. PubMed ID: 19438763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual endocranial and inner ear endocasts of the Paleocene 'condylarth' Chriacus: new insight into the neurosensory system and evolution of early placental mammals.
    Bertrand OC; Shelley SL; Wible JR; Williamson TE; Holbrook LT; Chester SGB; Butler IB; Brusatte SL
    J Anat; 2020 Jan; 236(1):21-49. PubMed ID: 31667836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Brain and Inner Ear of the Early Paleocene "Condylarth" Carsioptychus coarctatus: Implications for Early Placental Mammal Neurosensory Biology and Behavior.
    Cameron J; Shelley SL; Williamson TE; Brusatte SL
    Anat Rec (Hoboken); 2019 Feb; 302(2):306-324. PubMed ID: 30290063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The petrosal and bony labyrinth of Diplobune minor, an enigmatic Artiodactyla from the Oligocene of Western Europe.
    Orliac MJ; Araújo R; Lihoreau F
    J Morphol; 2017 Sep; 278(9):1168-1184. PubMed ID: 28516487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prenatal growth stages show the development of the ruminant bony labyrinth and petrosal bone.
    Costeur L; Mennecart B; Müller B; Schulz G
    J Anat; 2017 Feb; 230(2):347-353. PubMed ID: 27726136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inner ear of a notoungulate placental mammal: anatomical description and examination of potentially phylogenetically informative characters.
    Macrini TE; Flynn JJ; Croft DA; Wyss AR
    J Anat; 2010 May; 216(5):600-10. PubMed ID: 20525088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Petrosal morphology and cochlear function in Mesozoic stem therians.
    Harper T; Rougier GW
    PLoS One; 2019; 14(8):e0209457. PubMed ID: 31412094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cranial anatomy of the early cynodont Galesaurus planiceps and the origin of mammalian endocranial characters.
    Pusch LC; Kammerer CF; Fröbisch J
    J Anat; 2019 May; 234(5):592-621. PubMed ID: 30772942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea.
    Grohé C; Tseng ZJ; Lebrun R; Boistel R; Flynn JJ
    J Anat; 2016 Mar; 228(3):366-83. PubMed ID: 26577069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of notoungulate (Placentalia, Mammalia) bony labyrinths and new phylogenetically informative inner ear characters.
    Macrini TE; Flynn JJ; Ni X; Croft DA; Wyss AR
    J Anat; 2013 Nov; 223(5):442-61. PubMed ID: 24102069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The comparative anatomy of the petrosal bone and bony labyrinth of four small-sized deer.
    Zhang B; Tong H
    Anat Rec (Hoboken); 2024 Mar; 307(3):566-580. PubMed ID: 37610098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental Mammals.
    Ekdale EG
    PLoS One; 2013; 8(6):e66624. PubMed ID: 23805251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of vestibular ecomorphology in birds.
    Benson RBJ; Starmer-Jones E; Close RA; Walsh SA
    J Anat; 2017 Dec; 231(6):990-1018. PubMed ID: 29156494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.