These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32735864)

  • 1. Cryoprotective activity of Arabidopsis KS-type dehydrin depends on the hydrophobic amino acids of two active segments.
    Yokoyama T; Ohkubo T; Kamiya K; Hara M
    Arch Biochem Biophys; 2020 Sep; 691():108510. PubMed ID: 32735864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of hydrophobic amino acids of K-segments in the cryoprotection of lactate dehydrogenase by dehydrins.
    Hara M; Endo T; Kamiya K; Kameyama A
    J Plant Physiol; 2017 Mar; 210():18-23. PubMed ID: 28040625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of cryoaggregation of phospholipid liposomes by an Arabidopsis intrinsically disordered dehydrin and its K-segment.
    Kimura Y; Ohkubo T; Shimizu K; Magata Y; Park EY; Hara M
    Colloids Surf B Biointerfaces; 2022 Mar; 211():112286. PubMed ID: 34929484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. F-segments of Arabidopsis dehydrins show cryoprotective activities for lactate dehydrogenase depending on the hydrophobic residues.
    Ohkubo T; Kameyama A; Kamiya K; Kondo M; Hara M
    Phytochemistry; 2020 May; 173():112300. PubMed ID: 32087435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Positive Charge Distribution on the Cryoprotective Activity of Dehydrins.
    Smith MA; Graether SP
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence composition versus sequence order in the cryoprotective function of an intrinsically disordered stress-response protein.
    Palmer SR; De Villa R; Graether SP
    Protein Sci; 2019 Aug; 28(8):1448-1459. PubMed ID: 31102309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and Functional Insights into the Cryoprotection of Membranes by the Intrinsically Disordered Dehydrins.
    Clarke MW; Boddington KF; Warnica JM; Atkinson J; McKenna S; Madge J; Barker CH; Graether SP
    J Biol Chem; 2015 Nov; 290(45):26900-26913. PubMed ID: 26370084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An intrinsically disordered radish vacuolar calcium-binding protein (RVCaB) showed cryoprotective activity for lactate dehydrogenase with its hydrophobic region.
    Osuda H; Sunano Y; Hara M
    Int J Biol Macromol; 2021 Jul; 182():1130-1137. PubMed ID: 33857518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of His residues.
    Hara M; Monna S; Murata T; Nakano T; Amano S; Nachbar M; Wätzig H
    Plant Sci; 2016 Apr; 245():135-42. PubMed ID: 26940498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Cryoprotective Activity in Human Genome-Derived Intrinsically Disordered Proteins.
    Matsuo N; Goda N; Shimizu K; Fukuchi S; Ota M; Hiroaki H
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29385704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryoprotective mechanism of a small intrinsically disordered dehydrin protein.
    Hughes S; Graether SP
    Protein Sci; 2011 Jan; 20(1):42-50. PubMed ID: 21031484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.
    Popova AV; Rausch S; Hundertmark M; Gibon Y; Hincha DK
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1517-25. PubMed ID: 25988244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of size and disorder in the cryoprotective effects of dehydrins.
    Hughes SL; Schart V; Malcolmson J; Hogarth KA; Martynowicz DM; Tralman-Baker E; Patel SN; Graether SP
    Plant Physiol; 2013 Nov; 163(3):1376-86. PubMed ID: 24047864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family.
    Liu Y; Yang M; Cheng H; Sun N; Liu S; Li S; Wang Y; Zheng Y; Uversky VN
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1291-1303. PubMed ID: 28867216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding of intrinsically disordered plant LEA proteins is driven by glycerol-induced crowding and the presence of membranes.
    Bremer A; Wolff M; Thalhammer A; Hincha DK
    FEBS J; 2017 Mar; 284(6):919-936. PubMed ID: 28109185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disorder and function: a review of the dehydrin protein family.
    Graether SP; Boddington KF
    Front Plant Sci; 2014; 5():576. PubMed ID: 25400646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cationic nature of lysine-rich segments modulates the structural and biochemical properties of wild potato FSK
    Szabała BM
    Plant Physiol Biochem; 2023 Jan; 194():480-488. PubMed ID: 36512982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and molecular characterization of an FSK
    Ghanmi S; Smith MA; Zaidi I; Drira M; Graether SP; Hanin M
    Phytochemistry; 2023 Sep; 213():113783. PubMed ID: 37406790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential adsorption to air-water interfaces: a novel cryoprotective mechanism for LEA proteins.
    Yuen F; Watson M; Barker R; Grillo I; Heenan RK; Tunnacliffe A; Routh AF
    Biochem J; 2019 Apr; 476(7):1121-1135. PubMed ID: 30898848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dehydrin-dehydrin interaction: the case of SK3 from Opuntia streptacantha.
    Hernández-Sánchez IE; Martynowicz DM; Rodríguez-Hernández AA; Pérez-Morales MB; Graether SP; Jiménez-Bremont JF
    Front Plant Sci; 2014; 5():520. PubMed ID: 25346739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.