These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 32735872)
1. The antiparkinson drug ropinirole inhibits movement in a Parkinson's disease mouse model with residual dopamine neurons. Wang Y; Bouabid S; Darvas M; Zhou FM Exp Neurol; 2020 Nov; 333():113427. PubMed ID: 32735872 [TBL] [Abstract][Full Text] [Related]
2. Similar L-dopa-stimulated motor activity in mice with adult-onset 6-hydroxydopamine-induced symmetric dopamine denervation and in transcription factor Pitx3 null mice with perinatal-onset symmetric dopamine denervation. Li L; Sagot B; Zhou FM Brain Res; 2015 Jul; 1615():12-21. PubMed ID: 25960345 [TBL] [Abstract][Full Text] [Related]
3. Hyperactive Response of Direct Pathway Striatal Projection Neurons to L-dopa and D1 Agonism in Freely Moving Parkinsonian Mice. Sagot B; Li L; Zhou FM Front Neural Circuits; 2018; 12():57. PubMed ID: 30104963 [TBL] [Abstract][Full Text] [Related]
4. De novo administration of ropinirole and bromocriptine induces less dyskinesia than L-dopa in the MPTP-treated marmoset. Pearce RK; Banerji T; Jenner P; Marsden CD Mov Disord; 1998 Mar; 13(2):234-41. PubMed ID: 9539335 [TBL] [Abstract][Full Text] [Related]
5. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons. Dragicevic E; Poetschke C; Duda J; Schlaudraff F; Lammel S; Schiemann J; Fauler M; Hetzel A; Watanabe M; Lujan R; Malenka RC; Striessnig J; Liss B Brain; 2014 Aug; 137(Pt 8):2287-302. PubMed ID: 24934288 [TBL] [Abstract][Full Text] [Related]
6. Striatal But Not Extrastriatal Dopamine Receptors Are Critical to Dopaminergic Motor Stimulation. Wang Y; Zhou FM Front Pharmacol; 2017; 8():935. PubMed ID: 29311936 [TBL] [Abstract][Full Text] [Related]
7. Dopaminergic treatment weakens medium spiny neuron collateral inhibition in the parkinsonian striatum. Wei W; Ding S; Zhou FM J Neurophysiol; 2017 Mar; 117(3):987-999. PubMed ID: 27927785 [TBL] [Abstract][Full Text] [Related]
8. Supersensitive presynaptic dopamine D2 receptor inhibition of the striatopallidal projection in nigrostriatal dopamine-deficient mice. Wei W; Li L; Yu G; Ding S; Li C; Zhou FM J Neurophysiol; 2013 Nov; 110(9):2203-16. PubMed ID: 23945778 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of D2/D3 receptors increases efficacy of ropinirole in chronically 6-OHDA-lesioned Parkinsonian rats. Matsukawa N; Maki M; Yasuhara T; Hara K; Yu G; Xu L; Kim KM; Morgan JC; Sethi KD; Borlongan CV Brain Res; 2007 Jul; 1160():113-23. PubMed ID: 17573046 [TBL] [Abstract][Full Text] [Related]
10. Effects of ropinirole on motor behavior in MPTP-treated common marmosets. Fukuzaki K; Kamenosono T; Kitazumi K; Nagata R Pharmacol Biochem Behav; 2000 Sep; 67(1):121-9. PubMed ID: 11113491 [TBL] [Abstract][Full Text] [Related]
11. Differential Synaptic Remodeling by Dopamine in Direct and Indirect Striatal Projection Neurons in Pitx3 Suarez LM; Alberquilla S; García-Montes JR; Moratalla R J Neurosci; 2018 Apr; 38(15):3619-3630. PubMed ID: 29483281 [TBL] [Abstract][Full Text] [Related]
12. Ropinirole protects against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice via anti-apoptotic mechanism. Park G; Park YJ; Yang HO; Oh MS Pharmacol Biochem Behav; 2013 Mar; 104():163-8. PubMed ID: 23369986 [TBL] [Abstract][Full Text] [Related]
13. D-512, a novel dopamine D Lindenbach D; Das B; Conti MM; Meadows SM; Dutta AK; Bishop C Br J Pharmacol; 2017 Sep; 174(18):3058-3071. PubMed ID: 28667675 [TBL] [Abstract][Full Text] [Related]
14. Ginkgo biloba extract (EGb 761) modulates the expression of dopamine-related genes in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Rojas P; Ruiz-Sánchez E; Rojas C; Ogren SO Neuroscience; 2012 Oct; 223():246-57. PubMed ID: 22885234 [TBL] [Abstract][Full Text] [Related]
15. Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. Iida M; Miyazaki I; Tanaka K; Kabuto H; Iwata-Ichikawa E; Ogawa N Brain Res; 1999 Aug; 838(1-2):51-9. PubMed ID: 10446316 [TBL] [Abstract][Full Text] [Related]
16. Parallel dopamine D1 receptor activity dependence of l-Dopa-induced normal movement and dyskinesia in mice. Li L; Zhou FM Neuroscience; 2013 Apr; 236():66-76. PubMed ID: 23357114 [TBL] [Abstract][Full Text] [Related]
17. Behavioral and biochemical correlates of the dyskinetic potential of dopaminergic agonists in the 6-OHDA lesioned rat. Carta AR; Frau L; Pinna A; Pontis S; Simola N; Schintu N; Morelli M Synapse; 2008 Jul; 62(7):524-33. PubMed ID: 18435422 [TBL] [Abstract][Full Text] [Related]
18. RGS Proteins as Critical Regulators of Motor Function and Their Implications in Parkinson's Disease. Ahlers-Dannen KE; Spicer MM; Fisher RA Mol Pharmacol; 2020 Dec; 98(6):730-738. PubMed ID: 32015009 [TBL] [Abstract][Full Text] [Related]
19. Neuroprotective effects of the novel D3/D2 receptor agonist and antiparkinson agent, S32504, in vitro against 1-methyl-4-phenylpyridinium (MPP+) and in vivo against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a comparison to ropinirole. Joyce JN; Presgraves S; Renish L; Borwege S; Osredkar T; Hagner D; Replogle M; PazSoldan M; Millan MJ Exp Neurol; 2003 Nov; 184(1):393-407. PubMed ID: 14637109 [TBL] [Abstract][Full Text] [Related]
20. L-DOPA Oppositely Regulates Synaptic Strength and Spine Morphology in D1 and D2 Striatal Projection Neurons in Dyskinesia. Suarez LM; Solis O; Aguado C; Lujan R; Moratalla R Cereb Cortex; 2016 Oct; 26(11):4253-4264. PubMed ID: 27613437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]