These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32735913)

  • 1. Benefits of animal models to understand the pathophysiology of depressive disorders.
    Czéh B; Simon M
    Prog Neuropsychopharmacol Biol Psychiatry; 2021 Mar; 106():110049. PubMed ID: 32735913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate and Gamma-Aminobutyric Acid Systems in the Pathophysiology of Major Depression and Antidepressant Response to Ketamine.
    Lener MS; Niciu MJ; Ballard ED; Park M; Park LT; Nugent AC; Zarate CA
    Biol Psychiatry; 2017 May; 81(10):886-897. PubMed ID: 27449797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Wistar-Kyoto rat model of endogenous depression: A tool for exploring treatment resistance with an urgent need to focus on sex differences.
    Millard SJ; Weston-Green K; Newell KA
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Jul; 101():109908. PubMed ID: 32145362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide: Antidepressant mechanisms and inflammation.
    Ghasemi M
    Adv Pharmacol; 2019; 86():121-152. PubMed ID: 31378250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Treatment Strategies of Depression: Based on Mechanisms Related to Neuroplasticity.
    Huang YJ; Lane HY; Lin CH
    Neural Plast; 2017; 2017():4605971. PubMed ID: 28491480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preclinical and clinical evidence of antioxidant effects of antidepressant agents: implications for the pathophysiology of major depressive disorder.
    Behr GA; Moreira JC; Frey BN
    Oxid Med Cell Longev; 2012; 2012():609421. PubMed ID: 22693652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response.
    Aleksandrova LR; Wang YT; Phillips AG
    Neurosci Biobehav Rev; 2019 Oct; 105():1-23. PubMed ID: 31336112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective.
    Hashimoto K
    Psychiatry Clin Neurosci; 2019 Oct; 73(10):613-627. PubMed ID: 31215725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Affective disorders and antidepressant drugs: Therapeutic innovations].
    Fakra E; Azorin JM; Adida M; Da Fonseca D; Kaladjian A; Pringuey D
    Encephale; 2010 Dec; 36 Suppl 6():S183-7. PubMed ID: 21237354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral biomarkers in animal models of major depressive disorder.
    Carboni L
    Dis Markers; 2013; 35(1):33-41. PubMed ID: 24167347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurophysiologic Advance in Depressive Disorder.
    Xu L; Mao R
    Adv Exp Med Biol; 2019; 1180():99-116. PubMed ID: 31784959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hypothesis of monoamine (5-HT) - Glutamate/GABA long neural circuit: Aiming for fast-onset antidepressant discovery.
    Li YF
    Pharmacol Ther; 2020 Apr; 208():107494. PubMed ID: 31991195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders.
    Fakhoury M
    Mol Neurobiol; 2016 Jul; 53(5):2778-2786. PubMed ID: 25823514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A brief history of the development of antidepressant drugs: from monoamines to glutamate.
    Hillhouse TM; Porter JH
    Exp Clin Psychopharmacol; 2015 Feb; 23(1):1-21. PubMed ID: 25643025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overlap in the neural circuitry and molecular mechanisms underlying ketamine abuse and its use as an antidepressant.
    Kokane SS; Armant RJ; Bolaños-Guzmán CA; Perrotti LI
    Behav Brain Res; 2020 Apr; 384():112548. PubMed ID: 32061748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging drugs for major depressive disorder.
    Connolly KR; Thase ME
    Expert Opin Emerg Drugs; 2012 Mar; 17(1):105-26. PubMed ID: 22339643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered neuronal spontaneous activity correlates with glutamate concentration in medial prefrontal cortex of major depressed females: An fMRI-MRS study.
    Zhang X; Tang Y; Maletic-Savatic M; Sheng J; Zhang X; Zhu Y; Zhang T; Wang J; Tong S; Wang J; Li Y
    J Affect Disord; 2016 Sep; 201():153-61. PubMed ID: 27235818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanisms of action of antidepressive drugs: new approaches].
    David DJ
    Encephale; 2012 Dec; 38 Suppl 2():S45-8. PubMed ID: 23279957
    [No Abstract]   [Full Text] [Related]  

  • 19. Emerging role of microRNAs in major depressive disorder and its implication on diagnosis and therapeutic response.
    Zhou L; Zhu Y; Chen W; Tang Y
    J Affect Disord; 2021 May; 286():80-86. PubMed ID: 33714174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The promise of ketamine for treatment-resistant depression: current evidence and future directions.
    DeWilde KE; Levitch CF; Murrough JW; Mathew SJ; Iosifescu DV
    Ann N Y Acad Sci; 2015 May; 1345(1):47-58. PubMed ID: 25649308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.