BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 32736069)

  • 1. BigGAN-based Bayesian Reconstruction of Natural Images from Human Brain Activity.
    Qiao K; Chen J; Wang L; Zhang C; Tong L; Yan B
    Neuroscience; 2020 Sep; 444():92-105. PubMed ID: 32736069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perception-to-Image: Reconstructing Natural Images from the Brain Activity of Visual Perception.
    Huang W; Yan H; Wang C; Li J; Zuo Z; Zhang J; Shen Z; Chen H
    Ann Biomed Eng; 2020 Sep; 48(9):2323-2332. PubMed ID: 32285343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semantics-Guided Hierarchical Feature Encoding Generative Adversarial Network for Visual Image Reconstruction From Brain Activity.
    Meng L; Yang C
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1267-1283. PubMed ID: 38498745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Alignment-Auxiliary Generative Adversarial Network-Based Visual Stimuli Reconstruction via Multi-Subject fMRI.
    Huang S; Sun L; Yousefnezhad M; Wang M; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2715-2725. PubMed ID: 37279132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing seen image from brain activity by visually-guided cognitive representation and adversarial learning.
    Ren Z; Li J; Xue X; Li X; Yang F; Jiao Z; Gao X
    Neuroimage; 2021 Mar; 228():117602. PubMed ID: 33395572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Natural Image Reconstruction from Human Brain Activity Based on Conditional Progressively Growing Generative Adversarial Networks.
    Huang W; Yan H; Wang C; Yang X; Li J; Zuo Z; Zhang J; Chen H
    Neurosci Bull; 2021 Mar; 37(3):369-379. PubMed ID: 33222145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative Adversarial Networks in Medical Image Processing.
    Gong M; Chen S; Chen Q; Zeng Y; Zhang Y
    Curr Pharm Des; 2021; 27(15):1856-1868. PubMed ID: 33238866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperrealistic neural decoding for reconstructing faces from fMRI activations via the GAN latent space.
    Dado T; Güçlütürk Y; Ambrogioni L; Ras G; Bosch S; van Gerven M; Güçlü U
    Sci Rep; 2022 Jan; 12(1):141. PubMed ID: 34997012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quality assessment of anatomical MRI images from generative adversarial networks: Human assessment and image quality metrics.
    Treder MS; Codrai R; Tsvetanov KA
    J Neurosci Methods; 2022 May; 374():109579. PubMed ID: 35364110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing Perceived Images From Human Brain Activities With Bayesian Deep Multiview Learning.
    Du C; Du C; Huang L; He H
    IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2310-2323. PubMed ID: 30561354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative adversarial networks for reconstructing natural images from brain activity.
    Seeliger K; Güçlü U; Ambrogioni L; Güçlütürk Y; van Gerven MAJ
    Neuroimage; 2018 Nov; 181():775-785. PubMed ID: 30031932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ea-GANs: Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis.
    Yu B; Zhou L; Wang L; Shi Y; Fripp J; Bourgeat P
    IEEE Trans Med Imaging; 2019 Jul; 38(7):1750-1762. PubMed ID: 30714911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paired conditional generative adversarial network for highly accelerated liver 4D MRI.
    Xu D; Miao X; Liu H; Scholey JE; Yang W; Feng M; Ohliger M; Lin H; Lao Y; Yang Y; Sheng K
    Phys Med Biol; 2024 Jun; 69(12):. PubMed ID: 38838679
    [No Abstract]   [Full Text] [Related]  

  • 15. Reconstruction of digit images from human brain fMRI activity through connectivity informed Bayesian networks.
    Yargholi E; Hossein-Zadeh GA
    J Neurosci Methods; 2016 Jan; 257():159-67. PubMed ID: 26470626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian reconstruction of multiscale local contrast images from brain activity.
    Song S; Ma X; Zhan Y; Zhan Z; Yao L; Zhang J
    J Neurosci Methods; 2013 Oct; 220(1):39-45. PubMed ID: 23999175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constraint-Free Natural Image Reconstruction From fMRI Signals Based on Convolutional Neural Network.
    Zhang C; Qiao K; Wang L; Tong L; Zeng Y; Yan B
    Front Hum Neurosci; 2018; 12():242. PubMed ID: 29988371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GP-GAN: Brain tumor growth prediction using stacked 3D generative adversarial networks from longitudinal MR Images.
    Elazab A; Wang C; Gardezi SJS; Bai H; Hu Q; Wang T; Chang C; Lei B
    Neural Netw; 2020 Dec; 132():321-332. PubMed ID: 32977277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-supervised Natural Image Reconstruction and Large-scale Semantic Classification from Brain Activity.
    Gaziv G; Beliy R; Granot N; Hoogi A; Strappini F; Golan T; Irani M
    Neuroimage; 2022 Jul; 254():119121. PubMed ID: 35342004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.