These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 32736168)
1. Biosynthetic molecular imaging probe for tumor-targeted dual-modal fluorescence/magnetic resonance imaging. Zhao H; Zhao H; Jiao Y; Zhu Y; Liu C; Li F; Wang Y; Gu Z; Yang D Biomaterials; 2020 Oct; 256():120220. PubMed ID: 32736168 [TBL] [Abstract][Full Text] [Related]
2. Tumor-Targeting NIRF/MR Dual-Modal Molecular Imaging Probe for Surgery Navigation. Li Q; Xue X; Wang J; Ye Y; Li J; Ren Y; Wang D; Liu B; Li Y; Zhao L; Xu Q Anal Chem; 2022 Aug; 94(32):11255-11263. PubMed ID: 35921653 [TBL] [Abstract][Full Text] [Related]
3. 99mTc-Labeled Iron Oxide Nanoparticles for Dual-Contrast (T1/T2) Magnetic Resonance and Dual-Modality Imaging of Tumor Angiogenesis. Xue S; Zhang C; Yang Y; Zhang L; Cheng D; Zhang J; Shi H; Zhang Y J Biomed Nanotechnol; 2015 Jun; 11(6):1027-37. PubMed ID: 26353592 [TBL] [Abstract][Full Text] [Related]
4. Doxorubicin-conjugated β-NaYF4:Gd(3+)/Tb(3+) multifunctional, phosphor nanorods: a multi-modal, luminescent, magnetic probe for simultaneous optical and magnetic resonance imaging and an excellent pH-triggered anti-cancer drug delivery nanovehicle. Padhye P; Alam A; Ghorai S; Chattopadhyay S; Poddar P Nanoscale; 2015 Dec; 7(46):19501-18. PubMed ID: 26538278 [TBL] [Abstract][Full Text] [Related]
5. Theranostic imaging of liver cancer using targeted optical/MRI dual-modal probes. Chen Q; Shang W; Zeng C; Wang K; Liang X; Chi C; Liang X; Yang J; Fang C; Tian J Oncotarget; 2017 May; 8(20):32741-32751. PubMed ID: 28416757 [TBL] [Abstract][Full Text] [Related]
6. Facile preparation of near-infrared fluorescence and magnetic resonance dual-modality imaging probes based on mesoporous organosilica nanoparticles. Li Y; Guo W; Su X; Lu N; Wu G; Ou-Yang L; Dang M; Tao J; Teng Z J Colloid Interface Sci; 2019 Mar; 539():277-286. PubMed ID: 30590235 [TBL] [Abstract][Full Text] [Related]
7. Facile Synthesis of Gadolinium Chelate-Conjugated Polymer Nanoparticles for Fluorescence/Magnetic Resonance Dual-Modal Imaging. Pan Y; Chen W; Yang J; Zheng J; Yang M; Yi C Anal Chem; 2018 Feb; 90(3):1992-2000. PubMed ID: 29293314 [TBL] [Abstract][Full Text] [Related]
8. Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging. Xu Y; Jia XH; Yin XB; He XW; Zhang YK Anal Chem; 2014 Dec; 86(24):12122-9. PubMed ID: 25383762 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of a Thermal-Responsive Dual-Modal Supramolecular Probe for Magnetic Resonance Imaging and Fluorescence Imaging. Zhou M; Li L; Xie W; He Z; Li J Macromol Rapid Commun; 2021 Aug; 42(16):e2100248. PubMed ID: 34272782 [TBL] [Abstract][Full Text] [Related]
10. Molecular Imaging of Breast Cancer: Role of RGD Peptides. Chakravarty R; Chakraborty S; Dash A Mini Rev Med Chem; 2015; 15(13):1073-94. PubMed ID: 26349490 [TBL] [Abstract][Full Text] [Related]
11. A novel plectin/integrin-targeted bispecific molecular probe for magnetic resonance/near-infrared imaging of pancreatic cancer. Wang Q; Yan H; Jin Y; Wang Z; Huang W; Qiu J; Kang F; Wang K; Zhao X; Tian J Biomaterials; 2018 Nov; 183():173-184. PubMed ID: 30172243 [TBL] [Abstract][Full Text] [Related]
12. Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Wang Y; Yang CX; Yan XP Nanoscale; 2017 Jul; 9(26):9049-9055. PubMed ID: 28639659 [TBL] [Abstract][Full Text] [Related]
13. Construction of specific magnetic resonance imaging/optical dual-modality molecular probe used for imaging angiogenesis of gastric cancer. Yan X; Song X; Wang Z Artif Cells Nanomed Biotechnol; 2017 May; 45(3):399-403. PubMed ID: 27074993 [TBL] [Abstract][Full Text] [Related]
14. A Synergistically Enhanced T Li Y; Li D; Jian K; Mei X; Wang G J Biomed Nanotechnol; 2019 Jan; 15(1):85-99. PubMed ID: 30480517 [TBL] [Abstract][Full Text] [Related]
15. Facile preparation of multifunctional uniform magnetic microspheres for T1-T2 dual modal magnetic resonance and optical imaging. Zhang L; Liang S; Liu R; Yuan T; Zhang S; Xu Z; Xu H Colloids Surf B Biointerfaces; 2016 Aug; 144():344-354. PubMed ID: 27110910 [TBL] [Abstract][Full Text] [Related]
16. Synergistic Enhancement of Fluorescence and Magnetic Resonance Signals Assisted by Albumin Aggregate for Dual-Modal Imaging. Wang L; Wan Q; Zhang R; Situ B; Ni K; Gao J; Feng X; Zhang P; Wang Z; Qin A; Tang BZ ACS Nano; 2021 Jun; 15(6):9924-9934. PubMed ID: 34096697 [TBL] [Abstract][Full Text] [Related]
17. Tumor targeting chitosan nanoparticles for dual-modality optical/MR cancer imaging. Nam T; Park S; Lee SY; Park K; Choi K; Song IC; Han MH; Leary JJ; Yuk SA; Kwon IC; Kim K; Jeong SY Bioconjug Chem; 2010 Apr; 21(4):578-82. PubMed ID: 20201550 [TBL] [Abstract][Full Text] [Related]
18. Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods. Xue Z; Yi Z; Li X; Li Y; Jiang M; Liu H; Zeng S Biomaterials; 2017 Jan; 115():90-103. PubMed ID: 27886557 [TBL] [Abstract][Full Text] [Related]
19. Modification of MR molecular imaging probes with cysteine-terminated peptides and their potential for in vivo tumour detection. Xu F; Lei D; Du X; Zhang C; Xie X; Yin D Contrast Media Mol Imaging; 2011; 6(1):46-54. PubMed ID: 20865697 [TBL] [Abstract][Full Text] [Related]
20. Upconversion nanoparticles conjugated with Gd(3+) -DOTA and RGD for targeted dual-modality imaging of brain tumor xenografts. Jin J; Xu Z; Zhang Y; Gu YJ; Lam MH; Wong WT Adv Healthc Mater; 2013 Nov; 2(11):1501-12. PubMed ID: 23630101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]